Как сделать зарядное устройство для батареек ааа своими руками в домашних условиях

Описывается и показывается процесс сборки зарядного устройства для малогабаритных аккумуляторов

Читайте также

Типы аккумуляторов и методы их заряда Никель-кадмиевые аккумуляторы

Типы аккумуляторов и методы их зарядаНикель-кадмиевые аккумуляторыТехнология изготовления щелочных никелевых аккумуляторов была предложена в 1899, когда Waldmar Jungner изобрел первый никель-кадмиевый аккумулятор (NiCd). Используемые в них материалы были в то время дороги, и их

Методы заряда Ni-Cd и Ni-MH аккумуляторов

Методы заряда Ni-Cd и Ni-MH аккумуляторовСуществует много различных методов заряда NiCd или NiMH аккумуляторов. Но все их можно разделить на 4 основные группы:• – стандартный заряд – заряд постоянным током, равным 1/10 от величины номинальной емкости аккумулятора, в течение

Заряд литий-ионных (Li-ion) аккумуляторов

Заряд литий-ионных (Li-ion) аккумуляторовЗарядное устройство для Li-ion аккумуляторов подобно зарядному устройству для свинцово-кислотных аккумуляторов (SLA) в части ограничения напряжения на аккумуляторе. Основные различия между ними заключаются в том, что у зарядного

Хранение аккумуляторов

Хранение аккумуляторовАккумуляторы относятся к категории “скоропортящихся продуктов”, начинающих терять свое качество сразу же после изготовления. Хотя степень деградации для некоторых типов аккумуляторов достаточно низка, все же не рекомендуется хранить их в

О восстановлении аккумуляторов

О восстановлении аккумуляторовПроцент восстановленных аккумуляторов при использовании контролируемых циклов разряда / заряда зависит от типа электрохимической системы, количества уже отработанных циклов, метода обслуживания и возраста аккумулятора.Ni-Cd. Наилучшие

Изготовление инструмента

Изготовление инструментаДля закрепления навыков слесарной и кузнечной обработки можно изготовить ряд слесарных и кузнечных инструментов, которые будут необходимы учащимся для их дальнейшей работы.Слесарное зубило куется вручную из прутковой стали У7 или У8. Заготовку

4.3. Изготовление орудий

4.3. Изготовление орудийОднако оставим игры и перейдем к серьезным поступкам взрослых людей.Говоря о происхождении человека, в качестве первого его отличия от животного указывают на использование и изготовление орудий. Решающим здесь является, конечно, изготовление

Изготовление изделий

Изготовление изделийНаибольшей популярностью среди точеных изделий пользуются предметы домашнего обихода: тарелки, плошки, стаканы, кувшины.Для изготовления точеных тарелок чаще всего используют старые сосновые доски, древесина которых уже от времени приобрела

Изготовление первого демонстрационного устройства

Изготовление первого демонстрационного устройстваПервое демонстрационное устройство, которое мы собираемся сделать, очень просто по конструкции и может быть использовано для измерения степени сокращения воздушной мышцы (см. рис. 16.10). Основание представляет собой

Изготовление второго демонстрационного устройства

Изготовление второго демонстрационного устройстваВторая модель представляет собой рычаг (см. рис. 16.13 и 16.14). Я изготовил модель рычага из дерева и пластика. Воздушная мышца и резиновая лента прикреплены к рычагу с помощью винтов. В точке опоры рычаг закреплен на

Установка тепловых аккумуляторов

Установка тепловых аккумуляторовВ установке ТА на любую автомашину можно выделить следующие группы операций:• определение места расположения ТА;• монтаж гидравлической схемы;• подключение блока управления;• прокачка системы охлаждения;• проверка и

4.2. Подбор баков-аккумуляторов

4.2. Подбор баков-аккумуляторовЕсть житейское правило: «Чем больше объем бака, тем лучше». В то же время существуют методики точного подбора и расчета объема баков на основе европейских норм UNI 9182.Метод используется для расчета объема гидроаккумулятора на основании

5.2.1. Изготовление матрицы

5.2.1. Изготовление матрицыМатрицу отливают из бронзы и цинка в литейной форме, изготовленной по твердой модели, вырезанной из дерева (березы, бука, осины) или гипса.Модель из гипса выполняют в следующей последовательности (см. рис. 5.10).Из жидкого гипса, имеющего

5.2.3. Изготовление пуансона

5.2.3. Изготовление пуансонаПолучение оттиска на тонком листовом металле возможно только при наличии пуансона, представляющего собой контррельеф (обратный рельеф), все выступающие части которого точно соответствуют углублениям в матрице, и наоборот. Пуансон

Технические характеристики зарядного устройства:

  • Количество независимых каналов заряда: 4
  • Количество независимых каналов разряда: 4
  • Ток заряда: 250 (мА)
  • Ток разряда 140 (мА)
  • Напряжение отключения разряда 1 (В)
  • Индикация: светодиодная

Собиралось зарядное не на выставку, а что называется из подручных средств, то есть утилизировалось окружающее добро, которое и выкинуть жалко и хранить особо не зачем.

Из чего можно самому сделать зарядку для «АА» и «ААА» аккумуляторов:

  • Корпус от CD-Rom
  • Силовой трансформатор от магнитолы (перемотанный)
  • Полевые транзисторы с материнских плат и плат HDD
  • Прочие компоненты или покупались или выкусывались:)

Как уже отмечалось, зарядка состоит из нескольких узлов, которые могут жить абсолютно автономно друг от друга. То есть, одновременно можно работать с 8 аккумуляторами: от 1 до 4 заряжать + от 1 до 4 разряжать. На фото видно, что кассеты для аккумуляторов, установлены под форм-фактор «АА» в простонародье «пальчиковых аккумуляторов», если необходимо работать с «мини-пальчиковыми акб» «ААА» достаточно подложить под минусовую клему гайку небольшого калибра. При желании можно продублировать держателями под размер «ааа». Наличие акб в держателе индицируется светодиодом (отслеживается прохождение тока).

Блок заряда

Схема самодельного зарядного устройства для "аа" "ааа" аккумуляторов: блок заряда

тест

Заряд осуществляется стабилизированным током, у каждого канала свой стабилизатор тока. Для того, что бы ток заряда был неизменным при подключении как 1 так и 2,3,4 аккумуляторов, перед стабилизаторами тока установлен параметрический стабилизатор напряжения. Естественно, кпд этого стабилизатора не на высоте и потребуется установить все транзисторы на теплоотвод. Заранее планируйте вентиляцию корпуса и размеры радиатора, учитывая то что в закрытом корпусе температура на радиаторе будет выше чем в разобранном состоянии. Можно модернизировать схему, введя возможность выбора тока заряда. Для этого схему необходимо дополнить одним переключателем и одним резистором на каждый канал, который будет увеличивать ток базы транзистора и соответственно повышать ток заряда проходящий через транзистор в аккумулятор. В моем случае блок заряда собран навесным монтажом.

Блок разряда акб


Блок разряда более сложен и требует точности в подборе компонентов. В основе лежит компаратор типа lm393, lm339 или lp239 функцией которого является подача сигнала «логической единицы», либо «ноля» на затвор полевого транзистора. При открытии полевого транзистора он подключает к аккумулятору нагрузку в виде резистора значение которого определяет ток разряда. При снижении напряжения на аккумуляторе до установленного порога отключения 1 (Вольт). Компаратор захлопывается и устанавливает на своем выходе логический ноль. Транзистор выходит из насыщения и отключает нагрузку от аккумулятора. Компаратор имеет гистерезис, который обуславливает повторное подключение нагрузки не при напряжении 1,01 (В) а при 1,1-1,15 (В). Смоделировать действие компаратора вы сможете скачав модель разрядного устройства для Proteus. Подобрав значения резисторов вы сможете перестроить устройство на нужное вам напряжение. Например: подняв порог отключения до 3 Вольт можно сделать разрядное для li-on и Li-Po аккумуляторов.
Вы можете скачать плату разрядного устройства в формате Sprint Layout она проектировалась для применения компаратора lm393 в DIP-корпусе. Питание компараторов должно осуществляться от стабилизированного источника напряжением 5 вольт, его роль выполняет TL-431 усиленный транзистором.

Смотрите также: схемы защиты акб от глубокого разряда
.
—Схема индикатора разряда батареи

Комментируйте, и присылайте ваши самоделки нам на почту samodelkainfo{собачка}yandex.ru либо регистрируйтесь и самостоятельно публикуйте.

  • Об авторе
  • Недавние публикации
Самоделкин

Живу в Мире самоделок, размещаю статьи которые присылают читатели. Иногда пишу на темы: полезные самоделки для дома и самоделки для радиолюбителей.

Самоделкин

Зачем нужен аккумулятор?

Универсальная батарея пригодится в поездках. Не нужно будет возить с собой все зарядные устройства. Можно сделать аккумулятор, который по габаритам и удобству в использовании будет соответствовать всем запросам.

Также можно самостоятельно сделать автоматическое зарядное устройство аккумулятора, которое пригодится в зимнее время года. Даже если гараж или стоянка отапливаются, аккумулятор все равно испытывает недостаток тепла. Поэтому он быстро разражается.

Можно в перерывах пополнять резерв его работы при помощи самодельной зарядки, и тогда можно будет смело ехать на дальние расстояния даже при самых суровых погодных условиях.

Принципиальная схема

Схема показана на рисунке в тексте. Напряжение 5V поступает от стандартного универсального зарядного устройства для стового телефона через соответствующий

разъем Х1 типа USB. Светодиод HL1 служит для индикации включенного состояния, потому что корпуса-вилки зарядных устройств, из-за своей облегченной конструкции, не всегда надежно держатся в штепсельных розетках, и на самих зарядных устройствах не всегда есть индикаторные светодиоды включенного состояния.

Принципиальная схема приставки к блоку питания на +5В для зарядки NiCd и NiMH аккумуляторов

Рис. 1. Принципиальная схема приставки к блоку питания на +5В для зарядки NiCd и NiMH аккумуляторов.

На микросхеме А1 сделан стабилизатор тока, протекающего через заряжаемый аккумулятор GB1. В зависимости от емкости аккумулятора переключателем S1 переключаются резисторы R1, R2, R3, которыми регулируется величина стабилизации тока. Положения переключателя подписаны величинами номинальной емкости аккумуляторов.

Если аккумулятор другой емкости нужно переключатель установить в наиболее близкое значение. Можно заряжать как один аккумулятор, так и батарею из двух, последовательно включенных.

Вместо микросхемы КР142ЕН12 можно применить зарубежный аналог – LM317.

Powerbank своими руками

Наверх

  • Для изготовленияUSB зарядного устройства нам понадобится:
  • USB-удлинитель (любой длины, даже 5-10 см),
  • картридж на 4 батарейки типа АА (покупал на рынке),
  • диод (взят из дохлого блока питания),
  • паяльник, немного флюса и припоя (на 30 минут),
  • мультиметр (на 30 минут),
  • герметик или густой клей.

Принцип изготовления.

От USB-удлинителя оставляем только розетку с проводами. Ее нужно прикрепить (например, приклеить) к корпусу картриджа, а провода, идущие от [+5 VSB] и [GND] контактов USB-розетки, припаять к колодкам [+] и [-] картриджа

соответственно.

  1. Картридж на 4 батарейки типа АА:
  2. Как сделать зарядное устройство для батареек ААА своими руками в домашних условиях

В правильном USB- кабеле контакты [+5 VSB] и [GND] находятся по краям разъема, как указано на схеме. Обычно от контакта [+5 VSB] идет красный провод, а от [GND] – черный. Но для проверки не помешает поставить отрезанную вилку в компьютер и промерять потенциалы мультиметром. Этот вариант

самый надежный, потому что китайцы иногда такого намутят…

Для предотвращения обратного тока, когда зарядка идет не в прямом, а в обратном направлении, в разрыв одного из проводов ставим диод.

Он не обязателен, но есть и такие устройства, у которых можно снимать 5 Вольт с коннектора для зарядного (например, некоторые модели старых Sony Ericsson).

В таком случае, если в картридже будут установлены севшие батарейки или аккумуляторы, физика будет пытаться выровнять потенциалы на картридже и выводах телефона. Для

таких случаев и нужен диод.

Как сделать зарядное устройство для батареек ААА своими руками в домашних условиях

Для повышения прочности соединения я примотал розетку к картриджу стальной проволокой, а провода, диод и зазоры залил термоклеем. Так и грязь не будет забиваться, и провода случайно не зацепятся за всяческие выступающие предметы – ведь условия эксплуатации универсального зарядного предполагают расположение на ветках, рюкзаках, в палатках и байдарках и т.д. В

Полезные ссылки

  1. Питание светодиодов от сети ~220V — схема с гасящим конденсатором
  2. Устройство зарядки АА- и ААА-NiMH аккумуляторов Energizer  — разборка, схема

Описание работы зарядного для никель-кадмиевых и никель-металлгидридных аккумуляторов

Схема обеспечивает не быструю но эффективную зарядку поскольку заряд осуществляется стандартным током — одной десятой емкости батареи в комбинации с временем зарядки от 10 до 14 часов, без риска чрезмерной зарядки. Если вы уверены, что батарея разряжена только на половину, то зарядить ее полностью можно примерно за 6…7 часов.

фото зарядного устройства

Аккумуляторы размера AA имеют емкость от 1500 до 1800 мАч (миллиампер-час), так что ток зарядки должно быть от 150 до 180 мА. Если вы хотите зарядить несколько никель-кадмиевых  аккумуляторов сразу, достаточно просто подключить их последовательно, для того же ток зарядки, который будет протекать через всю батарею аккумуляторов, заряжая их одновременно.

схема простого зарядного устройства для аккумуляторов

Вопрос теперь в том, как получить нам постоянный ток 180 мА. Самым элегантным и точным решение будет использование источника тока. В этой роли может выступить регулятора напряжения типа LM317 включенный по схеме источника тока. Микросхема LM317 достаточно известная и регулировки осуществляется путем подбора сопротивления резистора, который подключается к выводам OUT и ADJ.

В нашем случае ( для 0,18 А), сопротивление будет равно 6,94 Ом (1,25/0,18) = 6,94 Ом. Данный номинал можно набрать из несколько последовательно-параллельно соединенных резисторов, но проще взять близкое стандартное значение 6,8 Ом.

Чтобы получить ток 180 мА нужно некоторое напряжение. Максимальное напряжение во время зарядки никель-кадмиевого аккумулятора составляет 1,5 В, а источник тока требуется около 3 В. Если заряжать только один аккумулятор, напряжение питания составит 4,5 В.

Если заряжается несколько никель-кадмиевых аккумуляторов сразу, нужно 1,5 В умножить на число аккумуляторов плюс 3 В. Для четырех аккумуляторов это будет напряжение питания 9 В. Если напряжение слишком низкое, ток заряда будет слабым.

119-image.jpg

Паяльный фен YIHUA 8858

Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час…

LM317 аккумулятор 2014-03-18

С тегами: LM317 аккумулятор

1. Описание работы и схема устройства

В процессе работы зарядное устройство постоянно контролирует напряжение на заряжаемом аккумуляторе и автоматически отключает ток при достижении полной зарядки. Оно позволяет одновременно и независимо заряжать и разряжать два аккумулятора типоразмера АА или ААА.
Принципиальная схема устройства изображена на рисунке.

Принципиальная схема зарядного устройства

Функционально оно выполнено в виде двух каналов с общим питанием, имеющих по одному узлу зарядки и разрядки. Все переключения для осуществления процессов зарядки и разрядки производятся переключателями SA1 и SA2, а в качестве источника питания применено ЗУ сотового телефона с выходным стабилизированным напряжением 5 В и током не менее 1 А.

Функциональная схема подключения зарядного устройства

Рассмотрим работу одного канала и начнем с узла зарядки [2].
В процессе зарядки контроль напряжения на заряжаемом аккумуляторе происходит непрерывно. На транзисторах VT1 и VT2 собран триггер Шмитта, который сравнивает напряжение на заряжаемом аккумуляторе GB1 или GB2 с образцовым, поступающим на базу VT1 с движка подстроечного резистора R2.

Образцовое напряжение образовано стабилитроном VD1, резисторами R1 и R2. Резистором R1 задается рабочий ток стабилитрона (около 10 mA), а резистором R2 устанавливают нужное пороговое напряжение.

При подключении к зарядному устройству разряженного аккумулятора транзистор VT2 закрыт, а VT1 и VT3 открыты. Коллекторный ток транзистора VT3 через замкнутый контакт SA2.1 выключателя SA2 заряжает аккумулятор.

Как только напряжение на аккумуляторе достигнет заданного порогового значения сработает триггер и транзисторы VT1, VT3 закроются, а VT2 откроется и включит светодиод HL1, сигнализирующий об окончании зарядки.

Выключателем SА1 выбирают типоразмер аккумулятора и задают необходимый зарядный ток равный 110 или 260 mA.

В замкнутом положении контакта SA1.2 зарядка осуществляется током 110 mA, позволяющим заряжать аккумуляторы емкостью 850, 1100 и 1600 mA/ч. В замкнутом положении контакта SA1.1 зарядка осуществляется током 260 mA, позволяющим заряжать аккумуляторы емкостью 2100, 2600, 2700 и 2850 mA/ч.

Выключателем SА2 устройство переводят в режимы зарядки или разрядки.

Кнопочный выключатель SB1 предназначен для принудительного запуска зарядного устройства, если аккумулятор разряжен не до конца. Нажатие выключателя приводит к установке триггера в состояние, соответствующее режиму зарядки.

Теперь рассмотрим работу узла разрядки, который питается от разряжаемого аккумулятора и при достижении на нем напряжения 0,9 — 1.1 В автоматически прекращает процесс разрядки [3].

При кратковременном нажатии кнопки SB2 на базу транзистора VT5 через резистор R11 подается напряжение с аккумулятора GB1 или GB2. Если оно превышает порог открывания транзистора VT5 (примерно 0,6 В), он открывается и открывает транзистор VT4, через участок коллектор-эмиттер которого происходит разрядка аккумулятора.

По мере разрядки аккумулятора напряжение на нем снижается, и когда оно упадет ниже порога открывания транзистора VT5, тот закрывается и закрывает VT4. Процесс разрядки прекращается. В качестве нагрузки и индикатора работы блока разрядки применена лампа накаливания HL3 с номинальным напряжением 1 В. Также можно применить лампы на напряжение 1,5 и 2 В.

Вместо лампы можно установить резистор сопротивлением 20 – 30 Ом. В этом случае не будет индикации и придется периодически смотреть напряжение на разряжаемом аккумуляторе.

Схемы зарядок li-ion аккумуляторов

Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

Для некоторых схем приводится разводка печатной платы, выполненная в программе Sprint Layout. Скачать 6-ую версию программы можно по этой ссылке.

LM317

Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

Зарядка для 18650 на lm317

Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 — не менее 1 Ватт.

Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).

LM317 бывает в разных корпусах:

Разновидности lm317

Назначение выводов (цоколевка):

Цоколевка LM317

Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два — отечественного производства).

Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет — 11 руб/шт.

Печатная плата и схема в сборе приведены ниже:

Печатная плата зарядного устройства для 18650 на микросхема LM317

Зарядка для литий-ионных аккумуляторов на лм317

Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

MAX1555 или MAX1551

MAX1551/MAX1555 — специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).


Единственное отличие этих микросхем — МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 — сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.

Подробное описание этих микросхем от производителя — datasheet.

Максимальное входное напряжение от DC-адаптера — 7 В, при питании от USB — 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА — это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

Микросхема имеет 5 выводов. Вот типовая схема включения:

Схема зарядника для литий-полимерных аккумуляторов на микросхеме мах1555

Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

Вариант зарядки от USB можно собрать, например, на такой печатной плате.

Зарядка на мах1555

Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого (посмотреть на цены и афигеть).

LP2951

Стабилизатор LP2951 производится фирмой National Semiconductors (даташит). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

Величина напряжения заряда составляет 4,08 — 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

Рекомендую выше 4.2В не подниматься. Если заряжать до 4.1-4.15, в емкости потеряете совсем немного, зато аккумулятор выдержит значительно больше циклов заряд/разряд.

Ток заряда составляет 150 — 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

Зарядник на LP2951 (для литиевых аккумуляторов)

Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

Микросхему можно купить как в DIP-корпусе, так и в корпусе SOIC (стоимость около 10 рублей за штучку).

MCP73831

Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

mcp73831 для li-ion аккумулятора

Типовая схема включения взята из даташита:

Зарядное устройство на микросхеме MCP73831

Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

Зарядка в сборе выглядит так:

Зарядка лития

Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

Готовая плата зарядки лития от микроюсб

( эту плату в формате *.lay)

Пожалуй, это одна из самых простейших зарядок для литий-ионных аккумуляторов 18650, которую можно сделать своими руками. Подходит и для li-pol батарей.

Если тока в 500 мА недостаточно, что рекомендую обратить внимание на схему с TP4056.

LTC4054 (STC4054)

Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. описание микросхемы). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

Зарядка на ltc4054

Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

Очень простая зарядка для li-ion

Один из вариантов печатной платы доступен по этой ссылке. Плата рассчитана под элементы типоразмера 0805.

Ток заряда (в амперах) рассчитывается по формуле I=1000/R. Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод «через выводы» — делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено «земляной» фольги, тем лучше.

Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

Теплоотвод от лтс4054

Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.

LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая — нет (нужно отдельно раскачивать).

Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

TP4056

Микросхема выполнена в корпусе SOP-8 (см. datasheet), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

TP4056 (цоколевка)

Схема подключения требует самый минимум навесных элементов:

Зарядка для 18650 на микросхеме TP4056

Схема реализует классический процесс заряда — сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:

  1. Контроль напряжения подключенного аккумулятора (это происходит постоянно).
  2. Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2 кОм) до уровня 2.9 В.
  3. Зарядка максимальным током постоянной величины (1000мА при Rprog = 1.2 кОм);
  4. При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
  5. При достижении тока 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2кОм) зарядное устройство отключается.
  6. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.

Ток заряда (в амперах) рассчитывается по формуле I=1200/Rprog. Допустимый максимум — 1000 мА.

Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:

Тестирование зарядки для литий-ионного аккумулятора

Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.

Напряжение питания схемы должно лежать в пределах 4.5…8 вольт. Чем ближе к 4.5В — тем лучше (так чип меньше греется).

Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.

Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.

Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда (вот тут, например, можно выбрать какая плата вам нужна — с защитой или без, и с каким разъемом).

Модуль заряда li-ion 18650 на ТР4056

Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).

LTC1734

Тоже очень простая схема. Ток заряда задается резистором Rprog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).

Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).

Схема ЗУ для литиевых аккумуляторов на ИМС LTC1734

Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.

Индикатора заряда на указанной схеме нет, но в даташите на LTC1734 сказано, что вывод «4» (Prog) имеет две функции — установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.

Схема зарядки с индикатором окончания заряда LTC1734

Компаратор LT1716 в данном случае можно заменить дешевым LM358.

TL431 + транзистор

Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное — это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).

Зарядка для li-ion на транзисторе и TL431

Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).

Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.

Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов — сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток — плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).

MCP73812

Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip — MCP73812 (см. даташит). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес — всего один резистор!

Кстати, микросхема выполнена в удобном для пайки корпусе — SOT23-5.

Простейшая схема зарядки для лития 3.7 В на MCP73812

Единственный минус — сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).

Простое зарядное устройство для аккумулятора 18650

В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 — очень неплохой вариант.

NCP1835

Предлагается полностью интегрированное решение — NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).

Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.

Зарядное устройство на ncp1835

Из неоспоримых преимуществ хотелось бы отметить следующее:

  1. Минимальное количество деталей обвеса.
  2. Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
  3. Определение окончания зарядки.
  4. Программируемый зарядный ток — до 1000 мА.
  5. Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
  6. Защита от продолжительного заряда (изменяя емкость конденсатора Ст, можно задать максимальное время заряда от 6,6 до 784 минут).

Собранная плата ЗУ на NCP1835

Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.

Более подробное описание находится в даташите.

2. Конструкция и детали

Зарядно-разрядное устройство смонтировано на печатной плате из одностороннего фольгированного стеклотекстолита размером 60×45 мм и помещено в пластмассовый корпус. В виду простоты схемы устройство можно собрать на макетной плате или же вообще навесным монтажом.

Печатная плата разработана для двух каналов и ее рисунок предоставлен. Маркировка элементов показана только для одного канала, так как второй канал идентичен.

Рисунок печатной платы зарядного устройства

На следующем рисунке показано расположение деталей на плате, а также их маркировка согласно принципиальной схеме.

Расположение деталей на плате зарядного устройства

Батарейные отсеки, светодиоды и лампы накаливания, а также переключатели и кнопочные выключатели размещены на внешней части корпуса. Батарейные отсеки сначала приклеиваются к корпусу клеем, а затем дополнительно крепятся винтами. Винты используются с головкой впотай.

Батарейный отсек

Крепление отсеков на корпусе устройства

Монтаж батарейных отсеков и переключателей выполнен навесным монтажом непосредственно внутри корпуса. Кнопочные выключатели расположены в задней части корпуса и гибким проводом соединены с печатной платой.

Нумерация элементов, расположенных на корпусе зарядного устройства

Нумерация элементов задней части устройства

В устройстве применены резисторы мощностью 0,125 Вт. Резистор R2 подстроечный многооборотный любого типа. Вместо транзисторов КТ315Б (VT1, VT2) и КТ814Б (VT3) можно использовать любые с подобными параметрами. Транзисторы КТ814 снабжены теплоотводами.

Транзистор КТ502 (VT4) заменим на любой кремниевый с максимальным током коллектора не менее 150 mA. Транзистор КТ3102Г (VT5) выбран с повышенным коэффициентом по току и заменим на любой с похожими параметрами.

С блоком питания устройство соединяется обычным USB кабелем. Разъем, который используется для соединения с телефоном, отрезается, а жилки красного и черного цвета используются для подачи питания. Красная жилка – плюс, а черная — минус.

как из пальчиковых батареек сделать аккумулятор

Как зарядить пальчиковый аккумулятор без зарядки — YouTube

КАК ЗАРЯДИТЬ МОБИЛЬНЫЙ ТЕЛЕФОН ОТ БАТАРЕЕК

как из батареек сделать акумулятор — YouTube

ТОП-10 необычных батареек и аккумуляторов | BATTERY-INDUSTRY.RU

Самодельный аккумулятор для бесперебойника из АА

Как зарядить батарейки в домашних условиях без зарядного устройства

RCView

Как зарядить батарейки в домашних условиях без зарядного устройства

Как зарядить любые батарейки аккумуляторы с помощью ОДНОГО зарядного …

Коробка для батареек, и переделка предыдущей покупки с её …

Коробка для батареек, и переделка предыдущей покупки с её …

Коробка для батареек, и переделка предыдущей покупки с её …

замена аккумуляторов — YouTube

Как можно восстановить пальчиковые аккумуляторы-батарейки.

Как зарядить пальчиковую батарейку в домашних условиях?

Самодельное зарядное устройство для аккумуляторов 18650 на 2 слота …

Как сделать зарядное устройство для батареек ААА своими руками в …

Про аккумуляторы и батарейки. Ликбез для гуманитариев.

Зарядка пальчиковых аккумуляторов

Какие аккумуляторы АА/ААА и зарядное устройство выбрать в 2019 году …

Совет читателя: как использовать маленькую пальчиковую батарейку ААА …

Зарядное устройство для портативных аккумуляторов | Мастер-класс …

Ремонт зарядного устройства для пальчиковых батареек

Самодельное зарядное устройство для аккумуляторов аа с функцией разряда

Как правильно заряжать литий ионный аккумулятор: как собрать …

Как получить напряжение 12 вольт » Школа для электрика: все об …

Самодельное зарядное устройство для пальчиковых аккумуляторов

Делаем зарядку для телефона от пальчиковых батареек за 15 минут …

Зарядные устройства для пальчиковых аккумуляторов

Зарядное устройство для портативных аккумуляторов | Мастер-класс …

КАК ВОССТАНОВИТЬ АККУМУЛЯТОРНУЮ БАТАРЕЙКУ u2014 восстановление …

Зарядное устройство АА | Творим После Работы

Как выбрать зарядное устройство для аккумуляторов (Ni-Mh, Ni-Cd и Li …

Как сделать батарейку из конденсатора своими руками в домашних …

18650 аккумулятор: как заряжать Li-Ion батарейки этого типа

Делаем зарядку для телефона от пальчиковых батареек за 15 минут …

Аккумуляторы Sofirn — заряжаемые пальчиковые батарейки АА — Обзоры …

Коробка для батареек, и переделка предыдущей покупки с её …

Блог — Выбираем лучшее зарядное устройство для аккумуляторов

Как продлить жизнь батарейки ???? как зарядить пальчиковые батарейки в …

Блог — Как правильно выбрать аккумуляторы АА

Как зарядить смартфон от трёх батареек и фольги

Виды батареек и их характеристики

КАК БЫСТРО СДЕЛАТЬ ИЗ МИЗИНЧИКОВОЙ БАТАРЕЙКИ ПАЛЬЧИКОВУЮ — YouTube

Как зарядить батарейку в домашних условиях: 6 рабочих способов

Как зарядить батарейки в домашних условиях без зарядного устройства

Как взрывается батарейка (+ видео)

КАК ВОССТАНОВИТЬ АККУМУЛЯТОРНУЮ БАТАРЕЙКУ u2014 восстановление …

Выбираем батарейки: аккумуляторные, пальчиковые и другие типы

Машинка 4х4 и доработка ее питания

Простейшее солнечное зарядное для пальчиковых аккумуляторов

Как выбрать зарядное устройство для аккумуляторов АА и ААА | Какое …

Лучшие батарейки и аккумуляторы АА и ААА и зарядные устройства к ним …

Почему простые батарейки нельзя зарядить, как аккумуляторы? | Вопрос …

Коробка для батареек, и переделка предыдущей покупки с её …

Как правильно заряжать аккумуляторы | Электрик

Бокс (кейс, футляр) Panasonic Eneloop для АА/ААА аккумуляторов …

Методы заряда NiMH аккумуляторов и принципы работы «умных» зарядных …

как сделать батарейку для телеф из аккум-ой батареики АА ???

ЗУ от батареек для сотового или плеера

Походная USB зарядка для пальчиковых батареек | журнальчик

Самодельное зарядное устройство для пальчиковых аккумуляторов схема

Как сделать экономичный светодиодный фонарик на одной батарейке …

Про аккумуляторы и батарейки. Ликбез для гуманитариев.

Power bank своими руками

Батарейки и аккумуляторы для экстремальных условий — как выбрать и …

Зарядные устройства для пальчиковых аккумуляторов

Зачем нужно отдавать батарейки на утилизацию?

Из чего сделать зарядное устройство для автомобиля

Такие специфические варианты, как аккумуляторы из активированного угля или поваренной соли рассматривать не стоит, если вы дорожите машиной. Есть более безопасный и простой вариант, который с. Успехом воплотит в жизнь любой водитель.

Сегодня для производства аккумуляторов используют литий-полимерные и литий-ионные батареи. Они тоже работают на основе химической реакции, но без использования электролита. Это позволяет говорить об их безопасности, потому что в процессе работы таких зарядок не возникнет химическая реакция.


  • Производство каталогов

  • Модные изделия ручной работы с золотым шитьем

  • Вентилятор своими руками: как сделать самодельный мощный вентилятор. Основные параметры и свойства вентиляторов (130 фото)

К тому же, литиевые батареи стоят недорого, работают стабильно и подходят для изготовления зарядных устройств для любой цели. Они широко используются при производстве фонариков, телефонов и электроники.

Зарядка от USB-порта

Можно изготовить зарядное устройство для никель-кадмиевых батарей на основе обычного USB-порта. При этом, заряжаться они будут током емкостью примерно 100 мА. Схема, в таком случае, будет следующей:

схема зарядки от USB порта

На сегодняшний момент, существует достаточно много различных зарядных устройств, продающихся в магазинах, но их стоимость может быть достаточно высокой. Учитывая, что главный смысл различных самоделок — это именно экономия денежных средств, то самостоятельная сборка еще более целесообразна в данном случае.

Данную схему можно доработать, добавив дополнительную цепь для зарядки пары аккумуляторов AA. Вот, что в итоге получилось:

схема для пары аккумуляторов

Чтобы было более наглядно, вот те комплектующие, которые использовались в процессе сборки:

процесс сборки

Понятно, что без элементарного инструментария нам не обойтись, поэтому перед началом сборки необходимо удостовериться, что у вас в наличии есть все необходимое:

  • паяльник;
  • припой;
  • флюс;
  • тестер;
  • пинцет;
  • различные отвертки и нож.

Интересный материал про изготовление своими руками, рекомендуем к просмотру

Тестер необходим для того, чтобы проверить работоспособность наши радиодетали. Для этого нужно сравнить их сопротивление, после чего сверить с номинальным значением.

Для сборки нам также понадобится корпус и батарейный отсек. Последний можно взять из детского симулятора Тетрис, а корпус может быть изготовлен из обычного пластмассового футляра (6,5см/4,5см/2см).

Крепим отсек для батарей на корпусе, используя шурупы. В качестве основы для схемы прекрасно подойдет плата от приставки Денди, которую нужно выпилить. Удаляем все ненужные компоненты, оставляя только гнездо питания. Следующим шагом будет пайка всех деталей, основываясь на нашей схеме.

Шнур питания для устройства можно взять обычный шнур от компьютерной мыши, обладающий входом USB, а также часть питающего провода со штекером. При пайке нужно строго соблюдать полярность, т.е. припаивать плюс к плюсу и т.д. Подключаем шнур к USB, проверяя напряжение, которое подается на штекер. Тестер должен показывать 5В.

В завершении нужно установить зарядный ток. Для этого необходимо разорвать цепь, соединяющую VD1 и плюсовую полярность аккумулятора. Подключаем тестер таким образом, чтобы его плюс соединялся с диодом, а минус — с аккумулятором. Выставляем режим измерения тока (200 мА).

Включаем в есть, после чего должен загореться светодиод, конечно, если все сделано правильно. Затем устанавливаем необходимый ток зарядки (100 мА), путем изменения сопротивления на резисторе R1. Проводим данную процедуру и для второго аккумулятора AA.

Еще одно интересное видео на это тему

Пара замечаний реалиста

Для полноты впечатлений, надо вставить пару ложек дегтя. Во-первых, простейшие расчеты показывают, что аккумуляторы окупаются после 7-8 цикла. Если говорить про мой детский случай — есть вероятность, что аккумуляторы потеряются быстрее, чем окупятся. Но греет мысль, что я меньше врежу экологии.

Во-вторых, понятно, что подобные зарядки окупатся преимущественно при профессиональном использовании (особенно Miboxer C4-12). Т.е. фотографы, вейперы, владельцы радиоуправляемых моделей, туристы с фонариками (

и все это один человек

). Однако, наличие такой вот зарядки дарит приятное чувство контроля за процессом. Т.е. ты не просто зарядил, а сделал это по умному. И это, черт возьми, греет тоже.

Сколько батарей взять?

Чтобы сделать простое зарядное устройство для автомобильного аккумулятора, нужно рассчитать, сколько литиевых батарей нужно взять.

У одного бочонка напряжение 3,7 Вольт и вес примерно 100 граммов. Емкость отличается и может варьироваться в пределах 1,505 А・ч. Для автомобиля маловато, но можно просто взять больше аккумуляторов, чтобы соблюсти все показатели мощности.

Для машины нужно импульсное зарядное устройство из трех аккумуляторов. В сумме должно получиться напряжение 11-12 Вольт. Но обращать внимание лучше на показатели емкости. У автомобильных аккумуляторов она составляет примерно 60 А・ч.

Три аккумулятора дают 5 А・ч. Значит, нужное напряжение и силу тока можно получить, используя 38-40 таких батарей. Их вполне хватит для зарядки аккумулятора автомобиля.

  • Зачем нужна охранная сигнализация, какие функции она выполняет
  • Как выбрать зимнюю спецодежду, и не ошибиться — рекомендации от профи

  • Прикормка своими руками — состав, особенности применения и способы хранения (115 фото и видео)

Где покупать микросхемы?

Можно, конечно, купить в Чипе-Дипе, но там дорого. Поэтому я всегда беру в одном очень секретном магазине)) Самое главное, правильно выбрать продавца, тогда заказ придет быстро и наверняка.

Для вашего удобства, я собрал самых надежных продавцов в одну таблицу, пользуйтесь на здоровье:

наименование даташит цена
LM317 5.5 руб/шт. Купить
LM350 11 руб/шт. Купить
MAX1555 105 руб/шт. Купить
LP2951 9.5 руб/шт. Купить
MCP73831 8 руб/шт. Купить
LTC4054 3 руб/шт. Купить
TP4056 4 руб/шт. Купить
LTC1734 42 руб/шт. Купить
TL431 85 коп/шт. Купить
MCP73812 65 руб/шт. Купить
NCP1835 83 руб/шт. Купить
*Все микросхемы с бесплатной доставкой

Стоит ли делать такое зарядное устройство?

У данного решения есть свои плюсы:

  • небольшой вес;
  • простота изготовления;
  • низкая себестоимость;
  • компактность.

Но из минусов стоит выделить проблемы при зарядке от генератора и сложности в эксплуатации при низких температурах. Также зарядное устройство обладает низкой надежностью и может не сработать в самый ответственный момент. Однако использовать его в качестве резервной зарядки — неплохой вариант.

Теперь вы знаете, зачем нужно было учить физику в школе. Каждый человек может попробовать сделать зарядное устройство для литиевых аккумуляторов своими руками. Это не только экономия денег, но и новые знания!

( 1 оценка, среднее 4 из 5 )

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...