О фрезерных станках: конструкция, принципиальная схема, настройка, наладка, видео работы

Электрооборудование станка СФ676. Работа электросхемы. Спецификация покупного электрооборудования.

Возможно, меня уволят за это!

Я давно хотел разместить серию постов по теме самодельных станков с ЧПУ. Но всегда останавливал тот факт, что Станкофф – станкоторговая компания. Дескать, как же так, мы же должны продавать станки, а не учить людей делать их самостоятельно. Но увидев этот проект я решил плюнуть на все условности и поделиться им с вами.

И так, в рамках этой статьи-инструкции я хочу, что бы вы вместе с автором проекта, 21 летним механиком и дизайнером, изготовили свой собственный настольный фрезерный станок с ЧПУ. Повествование будет вестись от первого лица, но знайте, что к большому своему сожалению, я делюсь не своим опытом, а лишь вольно пересказываю автора сего проекта. 

В этой статье будет достаточно много чертежей, примечания к ним сделаны на английском языке, но я уверен, что настоящий технарь все поймет без лишних слов. Для удобства восприятия, я разобью повествование на «шаги».

Сведения о производителе консольно-фрезерных станков 6Р82, 6Р82Г, 6Р82Ш, 6Р83, 6Р83Г, 6Р83Ш, 6P12, 6P13

Производитель универсальных фрезерных станков – Горьковский завод фрезерных станков, основанный в 1931 году.

Производство фрезерных станков на Горьковском станкостроительном заводе началось в 1932 году.

Электросхемы консольно-фрезерных станков 6Р82, 6Р82Г, 6Р82Ш, 6Р83, 6Р83Г, 6Р83Ш, 6P12, 6Р12Б, 6P13, 6Р13Б

Общие сведения

В настоящем руководстве приведены сведения по эксплуатация электрооборудования станков моделей 6Р82, 6Р82Г, 6Р82Ш, 6Р83, 6Р83Г, 6Р83Ш, 6P12, 6Р12Б, 6P13, 6Р13Б.

На каждом из указанных станков могут применяться следующие величины напряжений переменного тока:

  • силовая цепь 3х50 Гц, 60 Гц – 220, 380, 400, 415, 440 В;
  • цепь управления 50 Гц, 60 Гц – 110 или 220 В;
  • цепь местного освещения 50 Гц, 60 Гц – 36, 24 или 110 В;
  • цепь электродинамического торможения -56-60 В (для сети 380-440 В) и 36 В (для сети 220 В).

Конкретно для каждого станка питающее напряжение указывается в свидетельстве о приемке (см. руководство к станкам, ч. III).

Освещение рабочего места производится светильником местного освещения, смонтированным слева на станине станка.

В консоли рассоложен электромагнит Y1 для быстрых перемещений.

Кнопки управления смонтированы на пультах – на консоли и левой стороне станины.

Все аппараты управления размещены на четырех панелях, встроенных в нишах с дверками, на лицевую сторону которых выведены рукоятки следующих органов управления:

  • F1 – вводный выключатель;
  • S2 (S4) – реверсивный переключатель шпинделя;
  • S6 – переключатель режимов;
  • S3 – выключатель охлаждения.

Станки 6Р82Ш и 6Р83Ш в отличие от других станков имеют два электродвигателя для привода горизонтального и поворотного шпинделей.

Завод-изготовитель оставляет за собой право вносить в электрооборудование станков дальнейшие изменения и усовершенствования.

При уходе за электрооборудованием необходимо периодически проверять состояние пусковой и релейной аппаратуры.

При осмотрах релейной аппаратуры особое внимание следует обращать на надежное замыкание и размыкание контактных мостиков.

Во время эксплуатация электродвигателей следует систематически производить их технические осмотры в профилактические ремонты. Периодичность технически осмотров устанавливается в зависимости от производственных условий, но не реже одного реза в два месяца. При профилактических ремонтах должна производиться разборка электродвигателя, внутренняя в наружная чистка, замена смазки подшипников. Смену смазки подлинников при нормальных условиях работы следует производить через 4000 часов работы, но при работе электродвигателя в пыльной в влажной среде ее следует производить чаще -по мере необходимости.

Перед набивкой свежей смазкой подшипники должны быть тщательно промыты бензином. Камеру заполняют смазкой на 2/3 ее объема.

Технические характеристики

МК6056 характеризуется рядом показателей:

  1. Общие станочные размеры: 2800х1265х1485h мм.
  2. Вес: 3,1тн.
  3. Класс точности: П.
  4. Допустимые габариты заготовки. Диаметр 500 мм (при установке прямо над станиной) или 290 мм (при нахождении над суппортом) или 630 мм над выемкой в станине (имеющей, как раз, технологическое назначение). Наибольшая длина: 1000мм. В сочетании это дает возможность обрабатывать габаритные детали, соблюдая при этом высокую точность и обеспечивая сложную форму. Для поддержки длинных изделий в процессе работы используются люнеты.
  5. Предельный диаметр сверла: 25мм. При больших отверстиях лучше применять специализированные сверлильные станки.
  6. Наибольшие размеры державок для резцов: 25х25мм. Это позволяет использовать, как старый привычный инструмент, так и современные сменные пластины, показывающие отличные рабочие параметры.
  7. Мощность шпиндельного привода: 11кВт, что уверенно дает требуемую нагрузку даже при значительной глубине резания и обеспечивает хорошую производительность. При черновой обработке допускается использовать большую подачу, но многое зависит от состояния поверхности, общей геометрии, наличия сложных условий.
  8. Диаметр отверстия в шпинделе. Через него можно подавать прутковые заготовки, тратя минимум времени на переустановку.
  9. Прочие характеристики шпиндельного узла: регулируемый интервал вращения от 16 до 2 000 оборотов в минуту, 22 скорости (включая обратные), максимальный крутящий момент 1 кНм. На практике доходить до верхних границ приходится крайне редко.
  10. Перемещения суппорта: 935мм (в продольном направлении) и 300мм (в поперечном).
  11. Интервал подач: от 0,05 до 2,8 (продольных) и от 0,025 до 1,4 (поперечных).
  12. Максимумы шагов при нарезании резьбы: 56-0,5 (для питчевых резьб), 0,5-112 (для модульных), 56-0,5 (для дюймовых).
  13. Подача пиноли до крайнего положения: 150мм.
  14. Мощность главного электрического двигателя: 11кВт.
  15. Частота тока: 50гц.
  16. Напряжение: промышленное 380В.

Важное значение имеет установка станка. Для него должен быть организован утолщенный фундамент. При установке желательно осуществлять прочное крепление к полу, снижающее вибрации и прочие перемещения. В отдельных условиях применяются виброопоры, н тут есть свои нюансы.

Основные параметры токарных станков

Прежде всего, каждый станок характеризуется максимально допустимым диаметром детали, которая может обрабатываться над станиной. Чаще всего, это значение выражается в виде общей высоты центров, позволяющей точно определить величину допустимого радиуса детали.

Обязательно учитывается расстояние между обоими центрами, означающее максимальную длину обрабатываемой детали. При этом, задняя бабка находится в крайнем правом положении.

Схема токарного станка

В зависимости от высоты центров, все токарные станки состоят из трех основных групп:

  1. Мелкие – высота центра составляет до 150 мм, расстояние между центрами – не более 750 мм.
  2. Средние – высота центра составляет от 150 до 300 мм, расстояние – от 1000 до 1500 мм.
  3. Крупные – высота составляет более 150 мм, расстояние – 1500 мм и более.

Шаг 1: Дизайн и CAD модель

Все начинается с продуманного дизайна. Я сделал несколько эскизов, чтобы лучше прочувствовать размеры и форму будущего станка. После этого я создал CAD модель используя SolidWorks. После того, как я смоделировал все детали и узлы станка, я подготовил технические чертежи. Эти чертежи я использовал для изготовления деталей на ручных металлообрабатывающих станках: токарном и фрезерном.

Признаюсь честно, я люблю хорошие удобные инструменты. Именно поэтому я постарался сделать так, чтобы операции по техническому обслуживанию и регулировке станка осуществлялись как можно проще. Подшипники я поместил в специальные блоки для того, чтобы иметь возможность быстрой замены. Направляющие доступны для обслуживания, поэтому моя машина всегда будет чистой по окончанию работ.

HKEYqjyke63pgfTxr7JNKFV5PdtBvbVETNOtYgSo.jpg
CeEaIDo10Skhe9TjbgZ9R4UhLmMgYf1qU3WFUaY7.jpg
6nkSf0Lp5uHAIONw1ikdAMGH40EhOipYVJJQIopR.jpg

Файлы для скачивания «Шаг 1»

Габаритные размеры

проверка станка на точность

проверка станка на точность,проверка станков на технологическую точность

1300 страниц

вес 24 м.б

формат DjVu

В книге показаны разнообразные проверки станков на точность. Показаны допуски, погрешности станков.

Рассказано как станок должен быть выставлен перед испытанием проверки на точность Рассмотрено меж ремонтное обслуживание.

Рассмотрены виды ремонта станков. Рассмотрена категория сложности ремонта по видам. Показан расчет ремонта на сложность .

И многое другое.

В книге рассказано конструктивные особенности токарных станков. Показаны кинематические схемы. Рассказано о модификациях станков. Присутствуют станки с ЧПУ.

вес 11 м. б

143 стр.

DjVu

Примеры принципиальных схем

К каждому электрическому прибору есть документация, в которой обычно указывается его принципиальный чертеж. Он может понадобиться для ремонта и замены вышедших из строя деталей или модулей, а также для уточнения принципа действия аппарата. В качестве примера рассмотрим наиболее популярные в интернете приборы, схемами которых интересуются мастера и любители покопаться в радиодеталях.

Прибор Алмаг-01

Одним из показательных примеров принципиальной электрической схемы является прибор АЛМАГ-01 – аппарат для сеансов магнитотерапии. Описание принципа его работы простое – генератор магнитных волн в симбиозе с несколькими магнитными катушками-индукторами создают магнитное поле, благотворно влияющие на организм человека. Вот чертеж данного устройства:

Принципиальная схема прибора Алмаг-01

Как видно, основные элементы таковы:

  • Генератор импульсного тока;
  • Катушки-индукторы (излучатели поля);
  • Кабель, соединяющий генератор с излучателями;

Выпрямитель ВСА 5К

Данный прибор используется в качестве выпрямителя переменного тока, и может применяться для зарядки аккумуляторов, или же, как источник выпрямленного электрического тока. Благодаря своей конструкции, данные устройства имеют возможность плавной регулировки напряжения на выходе от нуля и до необходимого значения. Ниже приведена принципиальная электрическая схема выпрямителя ВСА 5К:

Схема выпрямителя ВСА-5ку

Радиоприемник Ишим 003

Это устройство выпускалось в СССР с 1984 года, и является, по сути, всеволновым супергетеродином с преобразованием частот и разделением каналов АМ – ЧМ. В основном использовался в радиорубках организаций и предприятий для приема радиостанций АМ диапазона, а также станций ЧВ и УКВ диапазонов. Стоит отметить, что данный аппарат был мечтой многих радиолюбителей того времени, но сегодня, конечно, уже утратил былую привлекательность. Однако существует масса любителей, которые и сегодня хотели бы скачать принципиальную электрическую схему Ишим 003:

Схема приемника ИШИМ-003

Мультиметр DT 832

830 серия мультиметров пользуется наиболее широкой популярностью среди любителей радиотехники, и тому есть ряд причин:

  • Относительная дешевизна прибора;
  • Простота конструкции;
  • Полностью цифровое устройство;
  • Достаточные диапазоны измерений.

Для серьезных работ этот прибор не подойдет, но что-то измерить в бытовых условиях – лучше не придумаешь. Ниже изображена принципиальная электрическая схема dt 832 digital:

Схема мультиметра DT-832

Электрофон ВЕГА 108 стерео

Этот аппарат выпускался с 1979 года Бердским радиозаводом, и был незыблемой мечтой любой семьи. И это не мудрено: помимо, собственно проигрывания пластинок, это устройство могло записывать музыку с пластинок на магнитофон, а также писать звук с внешнего подключаемого микрофона. Сегодня многие из этих раритетов возвращаются в жизнь энтузиастами-радиолюбителями, для чего часто используется вот такая принципиальная электрическая схема Вега 108 стерео:

Схема электрофона Вега-108

Если какие-то моменты относительно принципиальных чертежей остались неясны, более подробную информацию можно отыскать в этом видео:

Шаг 2: Станина

Станина обеспечивает станку необходимую жесткость. На нее будет установлен подвижной портал, шаговые двигатели, ось Z и шпиндель, а позднее и рабочая поверхность. Для создания несущей рамы я использовал два алюминиевых профиля Maytec сечением 40х80 мм и две торцевые пластины из алюминия толщиной 10 мм. Все элементы я соединил между собой на алюминиевые уголки. Для усиления конструкции внутри основной рамы я сделал дополнительную квадратную рамку из профилей меньшего сечения. 

Для того, чтобы в дальнейшем избежать попадания пыли на направляющие, я установил защитные уголки из алюминия.  Уголок смонтирован с использованием Т-образных гаек, которые установлены в один из пазов профиля.

На обоих торцевых пластинах установлены блоки подшипников для установки приводного винта.

6gh4gd6eaQ4fByTONww5I2zBbACCL2CGuQOSfYfG.jpg
EaVnoXrRok2VLtEH68pQajFhfSwaPgdSH89bZr12.jpg

Несущая рама в сборе

MZwKYHkEHnCMpcdC4mT16I1m0dO41RBKBnoeTJtX.jpg
velkY0722S0qs9LlmWkfDqzprIBIihrZISWFE9Y5.jpg

Уголки для защиты направляющих

Файлы для скачивания «Шаг 2»

Чертежи основных элементов станины

Особенности

Универсальные станки отличаются своей многофункциональностью. Рациональным поступком будет приобретение одного универсального станка по дереву вместо нескольких специальных, что позволит сэкономить деньги и место в мастерской без ущерба для удобства работы.

Существует несколько видов универсальных деревообрабатывающих станков, чаще всего на одной раме объединяют:

  • дисковую (циркулярную) пилу;
  • фуганок;
  • сверло или фрезу.

Промышленность предлагает различные варианты комбинированных станков, домашнему мастеру не составит особого труда выбрать то, что максимально соответствует его запросам.

Шаг 3: Портал

Подвижной портал – исполнительный орган вашего станка, он перемещается по оси X и несет на себе фрезерный шпиндель и суппорт оси Z. Чем выше портал, тем толще заготовка, которую вы можете обработать. Однако, высокий портал менее устойчив к нагрузкам которые возникают в процессе обработки. Высокие боковые стойки портала выполняют роль рычагов относительно линейных подшипников качения.

Основная задача, которую я планировал решать на своем фрезерном станке с ЧПУ – это обработка алюминиевых деталей. Поскольку максимальная толщина подходящих мне алюминиевых заготовок 60 мм, я решил сделать просвет портала (расстояние от рабочей поверхности до верхней поперечной балки) равным 125 мм.  В SolidWorks все свои измерения я преобразовал в модель и технические чертежи. В связи со сложностью деталей, я обработал их на промышленном обрабатывающем центре с ЧПУ, это дополнительно мне позволило обработать фаски, что было бы весьма затруднительно сделать на ручном фрезерном станке по металлу.

UxkKdEChEJHP7CJA0JlGnU2Hf7ux7doRBHXQLjhX.jpg
spg6Sv2ErpAFIDeETYvCtZtviV8EUqmlQrgDJuGz.jpg
TJXnDxLwpKYNIMhQ5y3IVMLNmyNMMymrvAK84aqr.jpg
74qkhKY7yp07hm9E4O8hAiemgnEaaQGi4gGa6Xiw.jpg

Файлы для скачивания «Шаг 3»

Вариант самостоятельной сборки

Для того, кто выполняет сборку чпу станка своими руками, есть другой вариант установить электрику на станках. Можно приобрести готовый набор, в котором есть три двигателя Nema и столько же драйверов, которые подходят к ним; трансформатор понижения для питания цепи управления и платы коммутации для блока питания (36 В). Можно использовать и другие наборы, собирая станок самостоятельно.

Электронику станка следует выполнить на одной плате. Туда же подключают, применяя разъемы и клеммники, всю совокупность внешних элементов:

  • ШД, концевые выключатели по каждой оси;
  • розетка для включения главного привода (можно DREMEL 300);
  • вентилятор, взятый от мини-пылесоса, трансформатор для блока питания;
  • разъем, обеспечивающий соединение с ПК посредством LPT порта.

Электроника ЧПУ станка T8 DIY

Почти все комплектующие несложно извлечь из старых компьютерных плат, Спектрумов – первых ПК, а также вышедших из употребления сетевых коммутаторов.

Схема предусматривает блок управления ЧПУ (программное включение шпинделя), изобилует дополнительными подключениями инструментов и датчиков. К компьютерному порту LPT контроллер ПУ подключают посредством стандартного кабеля. Для электроники станка не требуется принудительное охлаждение, она не нагревается.

Вся электроника для ЧПУ располагается в нише на задней стороне станка и закрывается панелью от пыли и грязи.

Заточной станок для ленточных пил

В отдельную категорию выделены заточные станки для обработки ленточных пил (рис. 4)

Рисунок 4. Заточной станок для ленточной пилы.

Данный тип заточных станков используется для обслуживания крупных лесопилок. Помимо стандартных элементов, присущих большинству заточных станков, имеет поддерживающие ленточную пилу опоры. В большинстве случаев современные заточные станки для ленточных пил оснащены автоматической системой подачи и в целом производства всех операций затачивания.

Шаг 9: Фрезерный шпиндель

Для своего проекта я использовал фрезерный шпиндель Kress. Если есть необходимость, средства и желание, то вы вполне можете поставить высокочастотный промышленный шпиндель с водяным или воздушным охлаждением. При этом потребуется незначительно изменить электрическую схему и добавить несколько дополнительных компонентов, таких как частотный преобразователь.

aK0HYQs1tMJ17O9taFDXa4YGJMfOwrWEx2K032lB.jpg
Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...