Сплав Д16Т: состав, свойства, область применения, аналоги

Д16 — Алюминиевый деформируемый сплав Марочник стали и сплавов

РАСЧЕТНАЯ ПЛОТНОСТЬ И ПЕРЕВОДНОЙ КОЭФФИЦИЕНТ АЛЮМИНИЯ И СПЛАВОВ

Марка сплава

Плотность, г/см3

Переводной коэффициент

AМц

2,73

1,011

АМцС

2,73

1,011

ММ

2,73

1,011

АМг2

2,68

0,992

АМг3

2,67

0,988

АМг5

2,65

0,981

АМг6

2,64

0,977

АД31

2,71

1,004

АД33

2,71

1,004

АД35

2,72

1,007

АВ

2,70

1,000

Д1

2,80

1,037

Д12

2,72

1,007

Д16

2,78

1,030

Д19

2,76

1,022

Д20

2,84

1,052

АК4

2,77

1,026

АК4-1

2,80

1,037

АК6

2,75

1,018

АК8

2,80

1,037

В95

2,85

1,055

1915

2,77

1,026

1925

2,77

1,026

ВД1

2,77

1,026

ВАД1

2,76

1,022

В95-2

2,85

1,055

АКМ

2,69

0,996

ПЕРЕВОДНЫЕ КОЭФФИЦИЕНТЫ ДЛЯ ВЫЧИСЛЕНИЯ ПРИБЛИЖЕННОЙ ТЕОРЕТИЧЕСКОЙ МАССЫ 1 М ПРОФИЛЯ ИЗ АЛЮМИНИЯ И АЛЮМИНИЕВЫХ СПЛАВОВ 

Марка сплава Переводной коэффициент Марка сплава Переводной коэффициент
АМц 0,958 1163 0,975
АМцС 0,958 1915 0,972
АМг2 0,940 1920 0,954
АМгЗ 0,937 1925 0,972
АМг5 0,930 1935 0,977
АМгб 0,926 1985ч 0,948
1561 0,930 1973 1,000
Д1 0,982 1980 0,968
Д16 0,976 ВД1 0,982
Д16ч 0,976 АВД1-1 0,982
Д19ч 0,968 АКМ 0,970
Д20 0,996 М40 0,965
АВ 0,947 АК4 0,970
ВАД1 0,968 АК6 0,962
К48-2 0,972 АД31Е 0,950
К48-2пч 0,972 АК4-1 0,982
АД31 0,950 АК4-1ч 0,982
АДЗЗ 0,951 ВД17 0,965
АД35 0,954 1420 0,867
1161 0,972    

ПЕРЕВОДНЫЕ КОЭФФИЦИЕНТЫ ДЛЯ ВЫЧИСЛЕНИЯ ПРИБЛИЖЕННОЙ ТЕОРЕТИЧЕСКОЙ МАССЫ 1 М ПРОФИЛЯ ИЗ МАГНИЕВЫХ СПЛАВОВ 

Марка сплава Переводной коэффициент
МА1 0,978
МА2 0,989
МА2-1 0,990
МА2-1пч 0,990
МА8 0,989
МА12 0,989

Маркировка и химический состав

Расшифровка маркировки сплава Д16Т (альтернативное обозначение 1160Т):

  • Д – дюраль (дюралюминий или дюралюмини);
  • 16 – номер сплава в серии;
  • Т – закаленный и естественно состаренный на максимальную прочность.

Химический состав марки Д16Т в % согласно ГОСТ 4784-97:

  • алюминий (Al) 90,9-94,7;
  • медь (Cu) 3,8-4,9;
  • магний (Mg) 1,2-1,8;
  • марганец (Mn) 0,3-0,9;
  • железо (Fe) до 0,5;
  • кремний (Si) до 0,5;
  • цинк (Zn) до 0,25;
  • титан (Ti) до 0,15;
  • хром (Cr) до 0,1;
  • примеси 0,15.

Действующий ГОСТ наиболее строго ограничивает содержание железа, которое не растворяется в алюминии и способно нарушать однородность структуры сплава. Также пристального внимания заслуживают титан и марганец, оказывающие заметное влияние на физические и механические свойства материала.

Основными зарубежными аналогами являются марки 2024 и AA2024 (США).

Расшифровка марки Д16Т

Расшифровка марки позволяет определить ее основные эксплуатационные качества и химический состав. Марка Д16Т относится к классу дюралюминия, который характеризуется высокой концентрацией легирующих элементов.

Сегодня расшифровывают Д16Т при применении ГОСТа. В отличии от других сплавов, рассматриваемые маркируются по собственной системе. Дюралюминий Д16Т расшифровывается следующим образом:

  1. Д – обозначение материалов группы дюралюминия. Она существенно отличается от обычного алюминия, что связано с включением в состав различных легирующих элементов. Концентрация других химических элементов позволяет изменить многие эксплуатационные качества.
  2. 16 – номер сплава. По сути эта цифра не указывает на какие-либо качества, но она используется для обозначения сплава с определенными качествами.
  3. Т – символ, который обозначение проведение закалки и естественного старения. Термическая обработка, связанная с закалкой, предусматривает оказание воздействия высокой температуры, за счет чего происходит перестроение поверхностного слоя.

Алюминий Д16Т весьма распространен в области, где производятся ответственные механизмы и устройства, на которые будет оказываться серьезное воздействие со стороны окружающей среды.

Скачать ГОСТ 4784-97

Характеристики и состав сплава

Состав дюралюминия Д16 регламентирован требованиями ГОСТ 4784-97. Согласно нормативам, доля алюминия Al в нем составляет до 94,7%. Включение каждого дополнительного элемента должно быть не более 0,6-0,7%. В зависимости от типа обработки возможны следующие разновидности и маркировки алюминиевого сплава:

  • Д16А — с нормальной плакировкой;
  • Д16Б — с технологической планировкой (поддается холодной деформации);
  • Д16М — мягкий отожженный сплав (поддается термической обработке);
  • Д16Т и Д16Т1 — закаленный с естественным и искусственным старением;
  • Д16Н и Д16Н1 — нагартованный и усиленно нагартованный сплав.

Сплав Д16 обладает малым удельным весом, высокой пластичностью, малой тепло- и электропроводностью, не склонен к растрескиванию. Материал может подвергаться ковке, резке, фрезеровке, а в процессе обжига становится податливым к холодному деформированию.

Характеристики д16

Форма выпуска

В чистом виде Д16 практически не применяется, при этом осуществляется плакирование деталей, что сокращает риск их корродирования. Из Д16 могут быть изготовлены детали:

  • в чистом виде;
  • Т – с термообработкой (закалка и естественное старение);
  • Т1 – с термообработкой (искусственное старение);
  • М – подверженные отжигу;
  • с плакированием (Д15ТА).

В качестве основных элементов выступают листы, уголки, плиты, прутья. Прутки с диаметром менее 100 мм имеют обязательную маркировку Т, в некоторых случаях – М. Листы изготавливают с нанесением на поверхность слоя чистого алюминия, что снижает степень коррозионной активности. Также изготавливают листы с маркировкой М и Т.

Алюминиевый сплав Д16Т подвержен коррозии в большей степени, чем другие аналогичные, поэтому он подвергается плакировке 2-4% слоем технического алюминия. Второй вариант покрытия – лак. Выбор типа зависит от условий эксплуатации, т.к. при повышенной температуре наиболее устойчивым к внешним факторам будет анодированный или плакированный лист. В качестве основного метода сварки используется точечный, максимальное распространение получили заклепочные и прочие соединения.

Вернуться к содержанию

Характеристики алюминиевого сплава Д16Т

Дюраль Д16Т обладает высокой прочностью и температурой плавления, хорошей твердостью и удовлетворительной коррозионной стойкостью. Для улучшения последнего параметра используется плакирование или анодирование. Продукция из алюминиевых сплавов весит почти в три раза меньше стальных изделий, что является важным преимуществом в ряде отраслей народного хозяйства (авиастроение, космическая промышленность и другие). Марка Д16Т легко поддается механической обработке на фрезеровочных и токарных станках (резке, ковке, штамповке), но тяжело сваривается. Стабильная структура сплава обеспечивает долговечность выпускаемых из него изделий.

Физические свойства дюралюминия марки Д16Т при температуре 20 °С:

  • модуль упругости первого рода — 0,72·10-5 МПа;
  • плотность — 2770 кг/м³;
  • удельное электросопротивление — 54·109 Ом·м.

Высокое значение модуля упругости определяет повышенное сопротивление к микроскопической деформации.

Для достижения максимальной твердости среди всех известных дюралей сплав Д16Т подвергается дополнительной термической обработке. Сначала его нагревают при температуре 495-505 °С, а затем закаливают в холодной воде до температуры 250-350 °С. В результате этого достигаются лучшие показатели сопротивления к межкристаллитной коррозии и питингу. Ну и в завершении материал подвергается естественному старению при комнатной температуре в течении 4-5 дней. В результате его прочностные характеристики заметно превосходят показатели таких сплавов как АМг2, АМг5 или АМг6.

Сфера применения алюминиевого листа

Листовой алюминий – один из наиболее востребованных и широко используемых видов металлопроката. Его активно применяют в следующих отраслях народного хозяйства:

  • строительство;
  • машиностроение;
  • судо- и авиастроение;
  • производство холодильных установок;
  • пищевая промышленность;
  • медицина и фармакология.

Этот вид алюминиевого металлопроката применяется там, где необходимо обеспечить высокую прочность с использованием максимально легковесных конструкций, а также на предприятиях и в заведениях, где важны эстетическая и гигиеническая составляющие.

Физические свойства сплава

T E 10- 5 a 10 6 l r C R 10 9
Град МПа 1/Град Вт/(м·град) кг/м3 Дж/(кг·град) Ом·м
20 0.72     2770    
100   22.9 130   0.922  

В нашем Telegram‑канале актуальные предложения по покупке и продаже

Х

Тут чего-то не хватает, или есть ошибка?

Пожалуйста, напишите нам об этом!

Отправить

Все и так нормально

Осуществляем прием смежных изделий и материалов:

  • Марганец по цене 70 руб. за 1 кг
  • Алюминий по цене 98 руб. за 1 кг
  • Алюминий пищевой по цене 94 руб. за 1 кг
  • Алюминий электротехнический по цене 98 руб. за 1 кг
  • Алюминий картерный по цене 70 руб. за 1 кг
  • Алюминиевые банки по цене 57 руб. за 1 кг
  • Алюминий АД31 (профиль, опалубка) по цене 90 руб. за 1 кг
  • Алюминий АМГ по цене 78 руб. за 1 кг

Технические характеристики

К основным характеристикам сплава Д16Т относятся:

удельная теплоемкость 0,92 Дж/кгК;
коэффициент теплопроводности 130 Вт/мК;
твердость HB 10-1 = 42 МПа;
относительное удлинение при разрыве 10%;
удельный вес 2800 кг/м3.

Вернуться к содержанию

Область применения

Дюралюминий Д16Т используется для изготовления силовых элементов конструкций самолетов, судов и космических аппаратов, кузовов автомобилей, бурильных труб, нефтяных и газопроводов, креплений и заклепок. Также из него производят транспортные детали и обшивку, элементы станков и декора, металлопрокат, уличные таблички и дорожные знаки. Марка Д16Т широко востребована в строительстве, машиностроении, металлургии, топливной и химической промышленности. Благодаря оптимальной совокупности физических и механических свойств спрос на нее не ослабевает с течением времени.

Сортамент дюраля марки Д16Т

Алюминиевый деформируемый сплав Д16Т может поставляться в виде следующих полуфабрикатов:

  • алюминиевые прутки (ГОСТ 21488-97);
  • алюминиевые листы, в том числе рифленые листы квинтет (ГОСТ 21631-76);
  • алюминиевые плиты (ГОСТ 17232-99);
  • проволоку (ГОСТ 7871-75);
  • трубы (ГОСТ 18482-79, ГОСТ 18475-82, ГОСТ 23697-79);
  • уголки (ГОСТ 22233-2001, ГОСТ 8617-81).

Обрабатываемость

Алюминиевый сплав Д16Т – деформируемый металл, который предназначен для изготовления листов, плит и т.д. Из него также можно сделать поковки и штамповки, полученные прокаткой, прессованием и экструзией.

Один из наиболее распространенных способов механической обработки – резка. Для этого предусматривается установка стандартных режимов работы, а также применение смазочно-охлаждающих материалов. Для специальных целей может потребоваться особенный инструмент.

Вернуться к содержанию

Наше предложение

Компания InoxAisa продает оптом и в розницу круглые прутки Д16Т с обычным качеством отделки поверхности, нормальной точностью и прочностью изготовления. Диаметр дюралевых кругов варьируется от 8 до 200 мм. Средняя цена продукции составляет 2 378 тенге/кг.

Заказать сортовой прокат марки Д16Т можно в нашем интернет-магазине или посетив офис компании InoxAsia в Алматы. Адрес, схема проезда, время работы офиса и склада представлены в разделе «Контакты». Стоимость и наличие товаров уточняйте по телефону +7 (727) 357-38-38 или электронной почте Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.. Для оптовых покупателей предусмотрена гибкая система скидок.

Маркировка алюминиевых сплавов.

Алюминиевые сплавы маркируют буквенно-цифровой маркировкой (табл. 4.4) или цифровой (рис. 4.1).

Буквы означают соответствующую группу, а цифры указывают номер сплава или содержание основного легирующего элемента в процентах.

Сочетание букв АМг или АМц означает сплав Al с Mg или Mn, соответственно. У сплавов Al – Mg цифра характеризует среднее содержание Mg (в %). Так, сплавы АМгЗ, АМг5 и АМг6 содержат соответственно 3; 5 и 6% Mg.

Высокопрочные сплавы (В) системы Al – Zn – Mg – Cu имеют первую цифру 9; вторая цифра указывает номер сплава (например, В93, В94, В95).

АД — означает A1 деформируемый.

Д — означает сплав типа дуралюмин – системы Al – Сu – Mg.

АК — означает группу алюминиевых ковочных сплавов. Цифры показывают номер сплава; дополнительная цифра 1 указывает модификацию сплава (например, АК4 и АК4-1).

Состояние при поставке сплавов, не упрочняемых термообработкой, обозначают буквами, следующими после маркировки: А – сплав повышенного качества; М – мягкий, отожженный; П – полунагартованный; Н – нагартованный.

Состояние при поставке сплавов, упрочняемых термообработкой, имеет буквенно-цифровую индексацию, следующую после маркировки: М – мягкий, отожженный; Т – термически обработанный, закаленный и естественно состаренный; Т1 – термически обработанный, закаленный и искусственно состаренный; Н – нагартованный; H1 – усиленно нагартованный и т. д.

Литейные алюминиевые стали обозначаются АЛ и цифрой, показывающей условный номер сплава (например, АЛ2, АЛЗ, АЛ4).

Наряду с этим имеется буквенно-цифровая маркировка технологической обработки полуфабрикатов и изделий, качественно отражающая механические, химические и другие свойства сплава. Например, обозначения режимов термической обработки литейных алюминиевых сплавов следующие: Т1 – старение; Т2 – отжиг; Т4 – за­калка; Т5 – закалка и частичное старение; Т6 – закалка и полное старение до наибольшей твердости; Т7 – закалка и стабилизирующий отпуск; Т8 – закалка и смягчающий отпуск.

Примеры обозначения сплавов с помощью буквенно-цифровой и цифровой маркировок приведены в табл.4.4. и 4.5.

Марки алюминия и его сплавов.

Марки алюминия первичного:

А0, А5, А5Е, А6, А7, А7Е, А8, А85, А95, А97, А99, А995, А999;

Алюминий технический:

АД,АД0, АД00, АД000, АД00Е, АД0Е, АД1, АДоч, АДС, АДч;

Алюминий для раскисления:

АВ86, АВ86Ф, АВ88, АВ88Ф, АВ91, АВ91Ф, АВ92, АВ92Ф, АВ97, АВ97Ф;

Алюминиевые литейные сплавы:

АК21М2.5Н2.5, АК4М4, АК5М2, АК5М7, АК7, АК7М2, АК9, АЛ1, АЛ11, АЛ13, АЛ19, АЛ2, АЛ21, АЛ22, АЛ23, АЛ23-1, АЛ24, АЛ25, АЛ26, АЛ27, АЛ27-1, АЛ28, АЛ29, АЛ3, АЛ30, АЛ32, АЛ33, АЛ34, АЛ4, АЛ4-1, АЛ4М, АЛ5, АЛ5-1, АЛ6, АЛ7, АЛ7-4, АЛ8, АЛ9, АЛ9-1, В124, В2616, ВАЛ10, ВАЛ10М, ВАЛ11, ВАЛ12, ВАЛ8;

Алюминиевые деформируемые сплавы:

1201, 1420, АВ, АД31, АД33, АД35, АК4, АК4-1, АК6, АК8, АМг1, АМг2, АМг5, АМг5П, АМг6, АМц, АМцС, АЦпл, В65, В93, В94, В95, В95П, В96, В96ц, В96Ц1, ВД17, Д1, Д12, Д16, Д16П, Д18, Д19, Д1П, Д20, Д21, ММ;

Алюминиевые антифрикционные сплавы:

АМСТ, АН-2.5, АО20-1, АОЗ-1, АОЗ-7, АО6-1, АО9-1, АО9-2, АО9-2Б, АСМ.

Таблица 4.4.

Буквенно-цифровая маркировка алюминиевых сплавов.

Принцип классификации Сплав
Название обозначение
По химическому составу АМг, АМц
По названию сплава Дуралюмин Д1,Д6
По технологическому назначению Ковочный АК6, АК8
По свойствам Высокопрочный В95, В96
По методу получения полуфабрикатов и изделий Спеченный Литейный САП, САС, АЛ2
По виду полуфабрикатов Проволочный Амг5П

Таблица 4.5.

Примеры маркировки алюминиевых сплавов.

Легирующие элементы Маркировка Легирующие элементы Маркировка
буквенная цифровая буквенная цифровая
А1 (чистый) А ДОО 1010 Cu, Mg, Mn, Si AK6

AK8

1360

1380

Mn АМц 1400
Mg — Mn АМг1 АМг5 1510 1550 Cu, Mg, Fe, Ni, Si AK4 AK4-1 1140 1141
Mg— SSi АВ 1343 Zn— Mg 1911
Cu— Mg Д1

Д16 ВАД1 Д18

1100

1160

1191 118,7

Zn— Mg— Сu B95 В96Ц1 1950 1960
Cu— Mn Д20 1200 1201

Рис. 4.1. Принципы цифровой маркировки алюминиевых сплавов.

Классификация алюминиевых сплавов.

Алюминиевые сплавы в основном подразделяются на деформируемые (поддающиеся обработке давлением в катаном или прессованном виде) и литейные (обрабатываемые методами литья). В производстве порошковых, гранулируемых сплавов и композиционных материалов в той или иной мере используются процессы пластической деформации и литья.

Алюминиевые сплавы разделяют также по способности упрочняться термической обработкой на упрочняемые (закалка с 435 – 545°C, естественное старение при 20°C или искусственное — при 75 – 225°С, 3 – 48 ч) и не упрочняемые при обработке. Сплавы могут подвергаться гомогенизационному (480 – 530°C, 6 – 36 ч), рекристаллизационному (300 – 500°C, 0,5 – 3 ч) и разупрочняющему (закаленные и состаренные сплавы — 350–430°C, 1 – 2 ч) отжигам. Деформируемые сплавы после обработки давлением и последующей термической обработки по механическим свойствам превосходят литейные сплавы. Литейные сплавы отличаются повышенным содержанием легирующих элементов, а эвтектическая структура (15 – 20 % объема) обеспечивает жидкотекучесть и более низкую температуру плавления.

Деформируемые сплавы применяют для изготовления несложных по конфигурации деталей, воспринимающих, однако, повышенные нагрузки. Литейные сплавы используют для изготовления деталей сложной формы, воспринимающих меньшие нагрузки.

Границей деформируемых и литейных алюминиевых сплавов служит предел насыщения твердого раствора при эвтектической температуре (рис. 4.2)

Рис. 4.2. Классификация алюминиевых сплавов по диаграмме состояния системы Al – X, где X – легирующий элемент.

Таблица 4.6.

Состав алюминиевых сплавов в процентах, термически не упрочняемых обработанных.

Марка Cu Mg Fe Si Mn
АМц < 0,2 < 0,05 < 1 < 1 1-1,6
Маг < 0,1 2-2,8 < 0,4 < 0,4 0,15-0,4
АМг < 0,2 4,5-5,7 < 0,4 < 0,4 0,3-0,6

Таблица 4.7.

Состав сплавов алюминия АК.

Марка сплава Содержание легирующих элементов в %
Cu Mg Mn Si Fe
АК1 3,8-4,8 0,4-0,8 0,4-0,8 < 0,7 < 0,7

Деформируемые алюминиевые сплавы

.

Коррозионностойкие сплавы повышенной пластичности разделяют на две основные группы:

а) сплавы на основе систем Al – Мn (АМц) и Al – Mg (АМг6), не упрочняемые термической обработкой (табл. 4.6.). Их используют в отожженном (М), нагартованном (Н) или полунагартованном (П) состояниях. Эти сплавы хорошо свариваются. Их применяют для изготовления коррозионностойких изделий, получаемых методами глубокой вытяжки и сварки (например, сварных бензобаков, трубопроводов для масла и бензина, корпусов и мачт судов);

б) сплавы системы Al – Mg – Si (АВ, АД31, АДЗЗ), упрочняемые закалкой (520 – 530 °С) и искусственным старением (150 – 170 °C, 10 – 12 ч). Эти сплавы, вне зависимости от состояния материала, не склонны к коррозионному растрескиванию под напряжением. Они удовлетворительно обрабатываются резанием в закаленном и состаренном состоянии, а также свариваются с помощью точечной, шовной и аргонодуговой сварки. Большей коррозионной стойкостью обладают сплавы АД31 и АДЗЗ, работающие в интервале – 70 до +50 °C; сплав авиаль АВ из указанной группы сплавов характеризуется большей прочностью. Из сплавов АВ, АД31 и АДЗЗ изготавливают лопасти и детали кабин вертолетов, барабаны колес гидросамолетов.

Хорошим сочетанием прочности и пластичности отличаются сплавы системы Al – Cu – Mg – дуралюмины Д1, Д16, Д18, Д19, ВД17 и др. Они упрочняются термической обработкой, хорошо свариваются точечной сваркой, удовлетворительно обрабатываются резанием (в термоупрочненном состоянии); однако склонны к межкристаллической коррозии после нагрева (особенно Д1, Д16 и В65). Значительное повышение коррозийной стойкости сплавов достигается плакированием (покрытием их техническим алюминием А7, А8). Сплавы Д19 и ВД17 работают при нагреве до 200 – 250 °C. Например, из сплава ВД17 изготовляют лопатки компрессора двигателя. В авиации дуралюмины применяют для изготовления лопастей воздушных винтов (Д1), силовых элементов конструкций самолетов (Д16, Д19), заклепок (В65, Д18) и др.

Высокопрочные сплавы системы Al – Zn – Mg – Cu (В93, В93 В96Ц) характеризуются большими значениями временного сопротивления (до 700 МПа). При этом достаточная пластичность, трещиностойкость и сопротивление коррозии достигаются режимами коагуляционного ступенчатого старения, а также применением сплавов повышенной (В95пч) и особой (В95оч) чистоты. В данном случае сплавы обладают лучшей коррозионной стойкостью, чем дуралюмины. Рабочая температура высокопрочных сплавов не превышает 120°C, ибо они не являются теплопрочными. Сплавы используют для изготовления высоконагруженных изделий, как правило, работающих в условиях сжатия (стрингеры, шпангоуты, лонжероны и др.).

Высокомодульный сплав 1420 обладает за счет легирования алюминия литием и магнием (система Al – Mg – Li) пониженной (на 11 %) плотностью и одновременно повышенным (на 4%) модулем упругости по сравнению со свойствами сплава Д16. Сплав 1420 характеризуется коррозийной стойкостью (аналогичной сплаву АМг6М) после закалки с искусственным старением, а также после сварки. Сплав может быть использован для замены в изделиях сплава Д16, обеспечивая при этом снижение их массы на 10 – 15%.

Высокой пластичностью при горячей обработке давлением ковочные сплавы АК6 и АК8 (система Al – Mg – Si – Cu). Они удовлетворительно свариваются, хорошо обрабатываются резанием, но склонны к коррозии под напряжением. Для обеспечения коррозионной стойкости детали сплавов АК6 и АК8 анодируют (электрохимически оксидируют) или наносят лакокрасочные покрытия. Из ковочных сплавов изготавливают ковкой штамповкой детали самолетов, работающие под нагрузкой (рамы, пояса лонжеронов, крепежные детали). Эти сплавы способны работать при криогенных температурах.

Жаропрочные алюминиевые сплавы системы Al – Cu – Mn (Д20, Д21) и Al – Cu – Mg – Fe – Ni (АК4-1) применяют для изготовления деталей, работающих при повышенных температурах до 300°C (поршни, головки цилиндров, диски и лопатки компрессоров). Жаропрочность достигается за счет легирования сплавов никелем, железом и титаном, затормаживающими диффузионные процессы и образующими сложнолегированные мелкодисперсные упрочняющие фазы, устойчивые к коагуляции при нагреве. Сплавы обладают высокой пластичностью и технологичностью в горячем состоянии, хорошо (Д20) или удовлетворительно (Д21, АК-1 (табл. 4.7.)) свариваются, однако отличаются пониженной коррозионной стойкостью; их защищают от коррозии анодированием и лакокрасочными покрытиями. При 250 °C большей жаропрочностью обладают сплавы Д21 и Д20 по сравнению со сплавом АК4-1.

Литейные алюминиевые сплавы

. Они предназначены для получения отливок деталей сложной конфигурации, изготовление которых резанием кованых и штампованных заготовок было бы связано со значительной металлоемкостью, фондоемкостью и трудоемкостью. Сплавы для фасонного литья должны обладать хорошими литейными свойствами: высокой жидкотекучестью, небольшой усадкой, малой склонностью к образованию горячих трещин и пористости. Одновременно сплавы должны иметь оптимальные механические и химические (сопротивление коррозии) свойства. Лучшими литейными свойствами обладают сплавы эвтектического состава. Распространены сплавы на основе систем Al – Si, Al – Cu, Al – Mg.

Конструкционные герметичные сплавы систем Al – Si (АЛ2) и Al – Si – Mg (АЛ4, АЛ9, АЛ34) получили название силумины. АЛ2 близок к эвтектическому составу (10 – 13 % Si) и отличается высокими литейными свойствами, коррозионной стойкостью, большой плотностью отливок. В то же время структура сплава АЛ2, представляющая собой игольчатую грубую эвтектику с включениями кристаллов первичного кремния, не обеспечивает требуемых механических свойств материала. Повышение пластичности сплава за счет изменения структуры (измельчение структуры эвтектики, появление избыточных кристаллов α — твердого раствора вместо кремния) достигается модифицированием АЛ2 натрием (0,065%) посредством введения в расплав смеси солей (67% NaF + 33% NaCl). Термической обработкой сплав АЛ2 не упрочняется. Упрочняются термической обработкой легированные силумины АЛ4, АЛ9, АЛ34. Силумины обладают хорошими литейными свойствами, удовлетворительной обрабатываемостью резанием, свариваемостью и коррозийной стойкостью, для повышения которой детали анодируют и защищают лакокрасочными покрытиями. Сплав АЛ2 используют для изготовления мелких, а АЛ4 и АЛ9 для изготовления средних и крупных литых деталей (корпусов компрессоров, картеров двигателей внутреннего сгорания). Сплав АЛ34 (ВАЛ5) превосходит сплавы АЛ4 и АЛ9 по прочности на 25 – 50%. Сплав АЛ34 применяется для отливок, получаемых литьем под давлением (блоков цилиндров автомобильных двигателей), и отличается хорошим комплексом технологических свойств.

Высокопрочные и жаропрочные литейные сплавы.

В эту группу входят сплавы систем Al – Cu – Мn (АЛ19), Al – Cu – Mn – Ni (АЛЗЗ) и Al – Si – Cu – Mg (АЛЗ, АЛ5).

Легирование сплава АЛ19 титаном обеспечивает ему высокие механические свойства (в том числе при динамическом нагружении) при комнатной и низких температурах, а дополнительное легирование церием и цирконием придаёт жаропрочность при температурах до 300°C. Сплав отличается хорошей обрабатываемостью резанием и свариваемостью, но имеет пониженную коррозионную стойкость. Сплав АЛ19 упрочняется термообработкой; он широко используется для литья крупногабаритных отливок в песчаные формы.

Сплав АЛЗЗ характеризуется высокой жаропрочностью, хорошей обрабатываемостью резанием, однако имеет пониженные литейные свойства и коррозионную стойкость. Он термически упрочняется. Температура работы сплава АЛЗЗ – до 350 °С.

Сплавы АЛЗ и АЛ5 отличаются повышенной жаропрочностью при температурах до 250 – 270 °С, но пониженной коррозионной стойкостью. Сплавы упрочняют, из них изготавливают корпуса приборов, головки цилиндров двигателей, работающие при повышенных температурах (250 – 270 °С).

Коррозионностойкие литейные алюминиевые сплавы

. Сплавы систем Al – Mg (АЛ8, АЛ27) и Al – Mg – Zn (AJI24) обладают высокой коррозионной стойкостью во многих агрессивных средах, обрабатываются резанием и свариваются. Дополнительное легирование сплавов системы Al – Mg бериллием, титаном и цирконием вызывает измельчение зерна и затормаживание процесса естественного старения, приводящего к снижению пластичности и коррозионной стойкости. Поэтому сплавы системы Al – Mg упрочняются только закалкой в масле без последующего старения. Сплавы АЛ8, АЛ27 и АЛ27-1 характеризуются невысокими литейными свойствами и низкой жаропрочностью (рабочие температуры до 80 °С). Сплавы способны работать в условиях коррозии морской воды вместо дефицитных бронз, латуней и нержавеющих сталей.

Легированные сплавы системы Al – Mg (АЛ24) обладают стабильными механическими свойствами, хорошей жаропрочностью (до 150°С) и удовлетворительными литейными свойствами. Сплав АЛ24 упрочняется естественным или искусственным старением без предшествующей закалки либо закалкой от 550 °C (на воздухе или в кипящей воде) с последующим искусственным старением (165 °C, 22 ч) для повышения прочности.

Спеченные алюминиевые сплавы

(порошковые и гранулированные) характеризуются повышенными механическими и физическими свойствами.

Спеченный алюминиевый порошок (САП) — это материал, полученный холодным, а затем горячим брикетированием (прессованием под давлением 700 МПа при 500 – 600°С) предварительно окисленной алюминиевой пудры (чешуек толщиной до 1мкм). Потом из горячепрессованных брикетов ковкой, прокаткой или прессованием изготавливают изделия или полуфабрикаты. Поскольку каждая частичка пудры покрыта тонким слоем оксида алюминия, то чем тоньше пудра, тем больше в САПе оксида алюминия, выше его прочность, но ниже пластичность; в САПе содержится А12О3 от 6 до 22%. САП характеризуется высокой прочностью и жаропрочностью при повышенных температурах (350 – 500°С). Так, временное сопротивление САПа при 500°C колеблется в интервале 80 – 120МПа (в зависимости от содержания А12О3). Разновидностью САПа является сплав СПАК-4 (системы Al – Cu – Mg – А12О3), в котором впервые использовано совместное упрочнение алюминиевой матрицы оксидами (А12О3) и интерметаллидами (например, Al9FeNi и др.). Обладая высокой длительной прочностью при 350°C (в 2—2,5 раза большей, чем у сплава АК4-1), сплав СПАК4 может применяться для изготовления поршней, работающих на форсированных режимах.

Спеченные алюминиевые сплавы систем Al – Si – Ni (САС-1) и Al– Si – Fe (CAC-2), отличающиеся низким коэффициентом термического расширения, изготавливают из порошков, полученных пульверизацией жидких сплавов. Это обеспечивает сплавам достаточно равномерную дисперсную структуру, содержащую мелкие включения кремния и интерметаллидов.

Получили распространение гранулируемые алюминиевые сплавы, отличающиеся высоким содержанием легирующих элементов (Mn, Cr, Zr, Ti, V), нерастворимых или малорастворимых в алюминии. Гранулирование (получение гранул — литых частиц с диаметром от нескольких миллиметров до десятых долей миллиметра) осуществляют распылением расплава с высокими скоростями охлаждения (104 – 108°C/с) в воде. При этом образуются пересыщенные переходными металлами твердые растворы на основе алюминия; одновременно изменяется структура: грубые первичные и эвтектические включения интерметаллидов (присущие слиткам, получаемым по обычной технологии) становятся более тонкими и равномерно распределенными, что повышает механические свойства сплавов. Из гранул изготавливают прессованные полуфабрикаты и листы любых алюминиевых сплавов. В процессе горячей деформации при получении полуфабрикатов аномально пересыщенные твердые растворы распадаются с выделением дисперсных частиц интерметаллидов. Таким образом, технологический нагрев до 400 – 450°C при изготовлении полуфабрикатов является упрочняющим старением сплава. Роль закалки для таких сплавов играет кристаллизация при больших скоростях охлаждения.

Дисперсионно твердеющим гранулируемым является сплав 01419 системы Al – Cr – Zr, который упрочняется вследствие выделения фаз А13Zr, А17Сг при прессовании прутков. Сплав обладает повышенной жаропрочностью до 350 °С.

Другой группой гранулируемых сплавов являются высокопрочные сплавы типа В95, В96Ц системы Al – Zn – Mg – Cu (например, ПВ90), упрочняемые термической обработкой. Сплав ПВ90Т1 превосходит по прочности и температуре рекристаллизации все серийные деформируемые алюминиевые сплавы. Сплав ПВ90 хорошо полируется и обрабатывается резанием. Обладая размерной стабильностью, он перспективен для изготовления зеркал, узлов трения и других ответственных деталей высокоточных приборов.

Композиционные алюминиевые сплавы

. Волокнистые композиционные материалы получают, армируя алюминиевые сплавы АД1, АДЗЗ борными волокнами (ВКА-1, ВКА-2). Эти материалы используют для изготовления стрингеров, труб. Для композиционных материалов ВКА-1 и ВКА-2 характерны высокие значения циклической прочности. Алюминиевые сплавы, армированные стальной проволокой (КАС-1, КАС-1А), могут подвергаться гибке, обладают высокой ударной вязкостью и жаропрочностью, большим сопротивлением распространению усталостной трещины и значительной прочностью. Применение накладок (стопперов) из материала КАС уменьшает скорость распространения трещины более чем в пять раз по сравнению с накладками из титановых сплавов.

Как отличить алюминий от дюралей?

Обычно в магазинах на изделиях имеется маркировка и по ней следует ориентироваться. Однако часто возникают вопросы о подделках. Бывает есть необходимость проверить партию изделий от неизвестного лица, не имеющего документации, других достоверных подтверждений тому, что предлагаемое именно дюраль. Конечно, анализатор химического состава сразу покажет отличие дюраля от алюминия. Ведь в классическом представлении, первый содержит единицы долей меди, а второй – ее десятые или даже сотые.

Также есть ряд субъективных способов, как определить дюраль в руках или нет. Сплав имеет характерный серо-стальной цвет. Если попытаться поцарапать поверхность, это получится довольно легко. Стружка ломкая и не вязкая. Попытки согнуть образцы покажут отсутствие пластической деформации. При ударе должен слышаться звон. В следах от царапин просматривается мелкокристаллическая структура.

Зная достоверно, чем отличается алюминий от дюралюминия, стоит воспользоваться еще одним опытным способом определения вида материала. Для этого на небольшой участок исследуемого образца наносят каплю едкого натрия. Оставляют на 5-10 минут. После удаляют вещество и смотрят на цвет образовавшегося пятна. Если оно темное, то это дюраль, но не сплавы алюминия с низким содержанием меди и не магналий.

Кроме того, алюминий растворяется в кислотах при добавлении щелочи, давая белый порошковый осадок. Проделав то же самое с куском дюралюминия, на выходе получают еще и голубенькие гранулы, которые дает присутствующая медь.

алюминиевый уголок

Уголок из алюминия

лист дюралевый

Лист из дюрали

Самое главное отличие дюрали от алюминия – это твердость, хрупкость и отсутствие пластичности. Если провести визуальное сравнение раза 3-4 (разных деталей) выполненных из алюминия и дюралюминия – отличие станет явным и в последующем взяв руки изделие из того или иного материала определить его будет уже просто.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...