Способы регулировки скорости двигателя постоянного тока

Способы регулирования частоты вращения двигателей оцени­ваются следующими показателями: плавностью регулирования; диапазоном регулирования, определяемым

Что такое тепловизор?

Устройства осуществляют тепловизионный контроль электрооборудования, находящегося под напряжением. Тепловизор определяет места сильного нагрева или его отсутствия. Прибор для тепловизионного обследования электрооборудования состоит из блоков электроники, питания, инфракрасного детектора и объектива.

Назначение и классификация. Якорно-швартовные устройства, предназначенные для выполнения операций по постановке судна на якорь, съемки с якоря, швартовки, различаются: по расположению основного вала — шпили и брашпили, по выполняемым операциям — якорные, швартовные и якорно-швартовные. Брашпили предназначены для якорных и швартовных операций, шпили могут быть якорными, швартовными и якорно-швартовными. Для швартовных операций часто устанавливают специальные швартовные лебедки. Электроприводы этих механизмов различают по системе электропривода (контроллерные, контакторные, Г-Д), по роду тока, по степени автоматизации (обычные и автоматизированные).

Управление электроприводами якорно-швартовных устройств

На рис. 1, а представлена кинематическая: схема шпиля. Вращение электродвигателя 1 через червячный редуктор 2 передается вертикальному валу, на верхнем конце которого укреплен швартовный барабан 3, имеющий ленточный тормоз и стопор. В электроприводе брашпиля (рис. 1, б) вращение двух исполнительных двигателей 1 через цилиндрический редуктор 3 передается валу с двумя швартовными барабанами 4, далее — через цилиндрическую пару — валу цепных звездочек 6. 

Судовая светотехника занимается изучением комплекса вопросов, связанных с созданием источников света, осветительных приборов, а также проектированием и эксплуатацией судовых осветительных установок с учетом их специфики.

Судовая светотехника и судовые осветительные приборы

Источники света в судовых осветительных установках — лампы накаливания и газоразрядные лампы высокого и низкого давления (табл. 1).

В лампах накаливания (ЛН) электрическая энергия превращается в тепловую путем нагревания вольфрамовой нити электрическим током. Тепловая энергия нагретой до 2400—3000°К нити излучается в виде тепловых и световых лучей. На долю видимых лучей приходится в лучшем случае 3% затраченной энергии. Для нормальной осветительной лампы 15 Вт эта величина равна 1,1%, а для лампы 1500 Вт — 2,8%. Остальная энергия тратится, преимущественно, на тепловые потери.

Сегодня на рынке можно купить различные виды кабелей, однако не все пользователи точно знают, для чего предназначен тот или иной проводник. Рассмотрим назначение кабеля МКЭШ и его параметры.

Это кабель, который применяется для радиотехнической, межприборной связи электронных устройств или коммутации телефонных станций. Может состоять минимум из 4 изолированных жил, максимум из 14.

Регулирование частоты вращения ДПТ НВ введение дополнительного сопротивления в цепь якоря

Дополнительное сопротивление (реостат rд) включают в цепь яко­ря аналогично пусковому реостату (ПР). Однако в отличие от по­следнего оно должно быть рассчитано на продолжительное проте­кание тока.

При включении сопротивления rд в цепь якоря выражение частоты (29.5) принимает вид

clip_image005, (29.12)

где clip_image007 — частота вращения в режиме х.х.;

clip_image009 — изменение частоты вращения, вызван­ное падением напряжения в цепи якоря.

С увеличением rд возрастает clip_image011, что ведет к уменьшению час­тоты вращения. Зависимость n = f(rд) иллюстрируется также и механическими характеристиками двигателя независимого воз­буждения (рис. 29.4, а): с повышением rдувеличивается наклон механических характеристик, а частота вращения при заданной нагрузке на валу (M = Mном ) уменьшается. Этот способ обеспечи­вает плавное регулирование частоты вращения в широком диапа­зоне (только в сторону уменьшения частоты от номинальной), од­нако он неэкономичен из-за значительных потерь электроэнергии в регулировочном реостате (I2a *rД), которые интенсивно растут с увеличением мощности двигателя.

clip_image002

Рис. 29.4. Механические характеристики двигателя параллельно­го возбуждения:

а — при введении в цепь якоря добавочного сопротивления;

б — при изменении основного магнитного потока;

в — при изменении напряже­ния в цепи якоря

Регулировка оборотов

Известно, что при подключении такого двигателя к источнику питания он сразу начинает вращаться, а направление его вращения зависит от полярности подключенного напряжения.

При изменении питающего напряжения изменяется ток в обмотках, следовательно изменяется и подводимая мощность и его обороты. Есть два основных способа изменения напряжения на клеммах таких электродвигателей — использовать балластные резисторы для ограничения тока или использовать ШИМ-регулирование.

Балластные резисторы греются, выделяют энергию в виде тепла в воздух – это не эффективно и бесполезно.

Смысл ШИМ-регулирования состоит в подаче импульсов с фиксированной частотой, но изменяющейся шириной. От ширины импульса зависит действующее напряжение на подключенной нагрузке и вычисляется по формуле:

Uнагр=Uпит×k,

где Uнагр – напряжение на нагрузке, Uпит – напряжение источника питания, k – коэффициент заполнения.

Коэффицент заполнения – то отношение ширины импульса (tимп) к периоду (T), то есть:

k=tимп/T.

На рисунке ниже вы видите, как выглядит питание нагрузки через ШИМ-регулятор при разных коэффициентах заполнения.

Так выглядит ШИМ-сигналТак выглядит ШИМ-сигнал

Так выглядит ШИМ-сигнал

Короче говоря,при ШИМ-регулировании питание очень быстро включается и отключается, то есть подаётся импульсами. И чем уже эти импульсы – тем меньшее напряжение доходит до нагрузки.

Для ШИМ-регулирования можно собрать схему на таймере NE555 и других микросхемах либо использовать микроконтроллер.

Схема ШИМ-регулятора на NE555, ёмкость C можно рассчитать по формулам из даташита, либо подобрать, от неё зависит частота ШИМ, можете использовать 1, 0.47, 0.22 мкФ.Схема ШИМ-регулятора на NE555, ёмкость C можно рассчитать по формулам из даташита, либо подобрать, от неё зависит частота ШИМ, можете использовать 1, 0.47, 0.22 мкФ.

Схема ШИМ-регулятора на NE555, ёмкость C можно рассчитать по формулам из даташита, либо подобрать, от неё зависит частота ШИМ, можете использовать 1, 0.47, 0.22 мкФ.

Семейство плат с микроконтроллером ардуино также способно выдавать ШИМ сигнал, стандартная частота ШИМ у них 500Гц, а если быть точным, то 488,28 Гц. Если вам не принципиальная частота – то можно использовать как есть без сторонних библиотек. Отмечу, что для большинства применений этого достаточно. Не очень хорошо это подходит для регулирования яркости осветительных приборов из-за повышения коэффициента пульсаций светильника и вреда для зрения в итоге.

Назначение выводов на плате (распиновка)Назначение выводов на плате (распиновка)

Назначение выводов на плате (распиновка)

Обратите внимание на иллюстрацию, приведенную выше. Из неё мы видим микроконтроллер Atmega328, который лежит в основе этих плат выдаёт ШИМ-сигнал только на выходах 3, 5, 6, 9, 10, 11, которые обычно помечены знаком «~» плате, а на картинках с распиновками сокращением «PWM».

Общий принцип использования ШИМ

Управляя скоростью модуляции ШИМ (Pulse Width Modulation, PWM) можно регулировать, к примеру, силу свечения светодиода – данный принцип пояснен на следующем рисунке. Аналогичный механизм используется и для управления скоростью вращения двигателя.

Общий принцип управления яркостью свечения светодиода с момощью ШИМ

Если на представленном рисунке выключатель будет замкнут на протяжении некоторого времени, то на протяжении этого же времени лампочка будет гореть. Если переключатель будет замкнут в течение 8ms и будет разомкнут 2ms в течение интервала 10ms, тогда лампочка будет гореть только в течение интервала 8ms. В рассмотренном примере можно сказать, что среднее выходное напряжение (на лампочке) будет составлять 80% от напряжения батареи.

В другом случае выключатель замыкается на 5ms и размыкается на эти же самые 5ms в течение интервала 10ms, таким образом среднее напряжение на лампочке будет составлять 50% от напряжения батареи. Принято говорить, что если напряжение батареи 5В и цикл занятости составляет 50%, то среднее напряжение на оконечном устройстве (лампочке) будет составлять 2.5В.

В третьем рассмотренном на рисунке случае цикл занятости составляет 20% и поэтому среднее напряжение на оконечном устройстве (лампочке) будет составлять 20% от напряжения батареи.

Применяя все сказанное к рассматриваемому нами примеру управления скоростью вращения двигателем можно сказать, что чем больше будет коэффициент заполнения ШИМ (отношение длительности ON состояния к периоду), тем выше будет скорость вращения двигателя.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Регулятор вращения для мотора

Регулятор вращения для мотора

Необходимые компоненты

  1. Плата Arduino UNO (купить на AliExpress).
  2. Двигатель постоянного тока.
  3. Транзистор 2N2222 (купить на AliExpress).
  4. Потенциометр 100 кОм (купить на AliExpress).
  5. Конденсатор 0.1 нФ (купить на AliExpress).
  6. Макетная плата.
  7. Соединительные провода.

Подключение к Arduino

Напрямую к порту ардуино подключать нагрузку для диммирования нельзя, так как он может выдать всего 20 мА. То есть напрямую к порту можно подключать отдельные маломощные 5-мм светодиоды, во всех остальных случаях – используйте транзистор. В последнем случае максимальная нагрузка зависит от типа транзистора.

Что мы сегодня будем использоватьЧто мы сегодня будем использовать

Что мы сегодня будем использовать

Как мы уже определились ШИМ у нас выдают только пины с номерами 3, 5, 6, 9, 10, 11. Значит, к ним и будем подключать нагрузку. В качестве транзистора предлагаю использовать полевой транзистор (MOSFET) IRF840 – он N-канальный со встроенным обратным диодом для защиты от всплесков противо-ЭДС, его характеристики:

  • Предельно допустимое напряжение сток-исток (Uds): 500 V
  • Предельно допустимое напряжение затвор-исток (Ugs): 20 V
  • Пороговое напряжение включения Ugs(th): 4 V
  • Максимально допустимый постоянный ток стока (Id): 8 A

Можно использовать и другие транзисторы с логическим уровнем включения затвора ( Ugs(th) до 5В), в противном случае придется использовать драйвер или промежуточный транзистор для его открытия.

Кроме транзистора нам нужно 2 резистора — первый между выходом платы и затвором на 240 Ом (если его у вас нет – возьмите соседние номиналы) для ограничения тока заряда затворной ёмкости, так мы снизим вероятность выхода из строя порта и просадок по питанию. Второй резистор на 10-12 кОм подключим между затвором и землёй. Он нужен для того, чтобы затвор не висел в воздухе, а также разряда затворной ёмкости и ускорения закрытия полевика. Схему подключения вы видите ниже.

Схема подключения двигателя к Ардуино через транзисторСхема подключения двигателя к Ардуино через транзистор

Схема подключения двигателя к Ардуино через транзистор

Чтобы задавать обороты, добавим в схему потенциометр, его подключим к аналоговому входу так, как мы делали это в прошлых статьях о сервоприводах и шаговых двигателях.одключение по

Подключение  потенциометра к ArduinoПодключение потенциометра к Arduino

Подключение потенциометра к Arduino

Соберем эту схему.

Схема в сбореСхема в сборе

Схема в сборе

Для ШИМ в родной библиотеке Arduino IDE есть специальная функция — analogWrite (pin, value), в ней pin – номер порта, на который нужно выдавать сигнал, а value – его величина от 0 до 255. То есть при значении value равном 255 коэффициент заполнения на выходе будет равен 1, т.е. будет непрерывный сигнал на входе, а при 127 — почти 50%.

Для нашего эксперимента достаточно простенького кода, который вы видите далее.

int pot = A1; // назначаем вход А1 для чтения сигнала с потенциометра

int motor = 5; // к этому выходу подключаем затвор полевого тразнистора

void setup() {

pinMode(motor, OUTPUT);

}

void loop() {

analogWrite(motor, map (analogRead(pot), 0, 1023, 0, 255));

}

Функция map, которая используется в качестве второго аргумента функции analogWrite позволяет сократить код на несколько строчек. Её назначение преобразовать одни размерности в другие. Чтобы понять, как она работает рассмотрим её синтаксис:

map(value, fromLow, fromHigh, toLow, toHigh),

где: value – откуда брать величину, в приведенном выше примере мы её считываем функцией analogRead с пина, объявленного в переменной pot (это А1), fromLow – минимальное значение, которое будет участвовать в преобразовании (у нас это 0), fromHigh – максимальное значение для преобразования (у нас это 1023, потому что это максимальное значение, которое «видит» ардуина при чтении аналогового сигнала), toLow – в какое значение преобразовывать минимальное значение со входа, toHigh – в какое значение преобразовывать максимальное значение со входа (у нас это 255, потому что это максимальное число, которое можно записать в analogWrite).

То есть мы получаем любое число от 0 до 1023, а функция возвращает число от 0 до 255. Таким образом, у нас происходит преобразование, в общем-то, с сохранением величины в процентах (комментаторов прошу подсказать, как правильно назвать такое преобразование).

Выбираем устройство

Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.

  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.

Прибор триак

Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.

Схема прибора триакСхема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.

С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Импульсное регулирование частоты вращения ДПТ НВ

Сущность этого способа регулирования иллюстрируется схемой, изображен­ной на рис. 29.7, а. Цепь обмотки якоря двигателя параллельного (независимого) возбуждения периодически прерывается ключом К. Во время замыкания цепи якоря на время tк обмотке якоря подводится напряжение U = Uимпи ток в ней достигает значения Iamax. Затем ключом К цепь якоря размыкают и ток в ней убывает, достигая к моменту следующего замыкания цепи значения Iamin(при размыкании ключа К ток в обмотке якоря замыкается через диод VD). При следующем замыкании ключа К ток достигает зна­чения Iamax и т. д. Таким образом, к обмотке якоря подводится не­которое среднее напряжение

clip_image002[35], (29.13)

где Т— отрезок времени между двумя следующими друг за другом импульсами напряжения (рис. 29.7, б); clip_image002[37]— коэффициент управления.

При этом в обмотке якоря проходит ток, среднее значение которого clip_image002[39].

При импульсном регулировании частота вращения двигателя

clip_image002[43]. (29.14)

Таким образом, импульсное регулирование частоты вращения аналогично регулированию изменением подводимого к цепи якоря напряжения. С целью уменьшения пульсаций тока в цепи якоря включена катушка индуктивности (дроссель) clip_image031[4], а частота подачи импульсов равна 200—400 Гц.

На рис. 29.7, в представлена одна из возможных схем им­пульсного регулирования, где в качестве ключа применен управ­ляемый диод — тиристор VS. Открывается тиристор подачей крат­ковременного импульса от генератора импульсов (ГИ) на управляющий электрод (УЭ) тиристора. Цепь L1C,шунтирующая тиристор, служит для запирания последнего в период между двумя управляющими импульсами. Происходит это следующим образом: при открывании тиристора конденсатор С перезаряжается через контур L1Cи создает на силовых электродах тиристора напряже­ние, обратное напряжению сети, которое прекращает протекание тока через тиристор. Параметрами цепи L1Cопределяется время (с) открытого состояния тиристора: clip_image002[45]. Здесь L1 выража­ется в генри (Гн); С — в фарадах (Ф).clip_image040

Рис. 29.7. Импульсное регулирование частоты вращения двига­теля постоянного тока

Значение среднего напряжения Uср регулируется изменением частоты следования управляющих импульсов от генератора им­пульсов на тиристор VS.

Жесткие механические характеристики и возможность плав­ного регулирования частоты вращения в широком диапазоне оп­ределили области применения двигателей независимого возбуж­дения в станочных приводах, вентиляторах, а также во многих других случаях регулируемого электропривода, где требуется ус­тойчивая работа при колебаниях нагрузки.

Измерения

Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.

Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.

Видео, демонстрирующее работу схемы

(1 голосов, оценка: 5,00 из 5)

loading.gif

Загрузка…

6 677 просмотров

Методы регулировки

Итак, различают три основных варианта регулирования скоростью:

  1. Изменением напряжения сети. Меняя подводимое питание можно управлять частотой вращения двигателя;
  2. Добавлением пускового реостата в цепь якоря. Регулируя сопротивление, можно уменьшить скорость вращения;
  3. Управлением магнитного потока. Двигатели с электромагнитами дают возможность регулировать поток путем изменения тока возбуждения. Однако нижний предел ν min ограничен насыщением магнитной цепи двигателя, что не позволяет увеличивать в большой степени магнитный поток.

К каждому из вариантов соответствует определённая зависимость механических характеристик.

Методы регулирования применительны к двигателям с различными:

  • типами возбуждения;
  • величиной мощности.

На практике в современных электрических моторах, в связи с недостатками и ограниченности диапазонов, рассмотренные методы не всегда применяются.

Это еще связано с тем, что машины отличаются довольно небольшими КПД, и к тому же не позволяют плавно увеличивать или уменьшать частоту вращения.

Электронные же схемы управления с регуляторами частоты, работающими от аккумуляторной батареи на 12 В, напротив, широко используются. Например, они очень актуальны для управления низковольтными электродвигателями 12 вольт в приборах автоматики, детских игрушках, электрических велосипедах, аккумуляторных детских автомобилях.

2

Принципиальной особенностью метода является то, что ток в цепи якоря и момент, развиваемый электродвигателем, зависят лишь от величины нагрузки на его валу. Регулировка осуществляется с помощью регулятора оборотов электродвигателя.

В течение очень долгого времени тиристорные преобразователи являлись единственным коммерчески доступными регуляторами двигателей. К слову сказать, они по-прежнему самые распространенные на сегодняшний день. Однако с появлением силовых транзисторов стали наиболее популярными регуляторы оборотов двигателя постоянного тока с широтно-импульсной модуляцией. Приведём для примера ниже схему, работающую от источника постоянного тока 12 В.

2

Схема на практике даёт возможность, к примеру, увеличивать либо уменьшать яркость свечения ламп накаливания на 12 вольт.

Последовательно-параллельное управление используется в ситуациях, когда два или более агрегата постоянного тока соединены механически. Схема с последовательным соединением электродвигателей, в которой общее напряжение делится на всех, используется для низкоскоростных приложений. Схема с параллельным соединением машин, имеющих одинаковое напряжение, используется в высокоскоростных применениях.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...