Тиристорное зарядное устройство — Сообщество «Оснащение Гаража и Инструмент» на DRIVE2

Метки: зарядка, зарядник, зарядка для аккумуляторов. Рано или поздно, но зарядное устройство для аккумуляторов начинает требоваться каждому автолюбителю. С приходом морозов я тоже о ней задумался. Аккумуляторы старенькие стали, заряд держать плохо начали, а одалживать зарядку у знакомых надоело. Покатался по городу, посмотрел что предлагается из неавт…

Схема и печатная плата ЗУ на SCR

Зарядное для авто аккумуляторов на тиристоре

Зарядное для авто аккумуляторов на тиристоре

Печатная плата нарисована вручную маркером. Вы можете сделать разводку самостоятельно, например на основании вот этого рисунка:

Зарядное для авто аккумуляторов на тиристоре

Принцип фазоимпульсного регулирования мощности с помощью тиристора

Имеется в виду один из режимов работы электронного компонента. Фазоимпульсное функционирование подразумевает изменение выдаваемого напряжения из-за смены интервала проводимости в рамках сетевого U. Подобное регулирование обеспечивает открытие и закрытие тиристора каждую ½ периода – 100 циклов в секунду. Этот способ постоянно и точно меняет напряжение, что актуально для нагрузок с малой инерцией.

Метки: зарядка, зарядник, зарядка для аккумуляторов

Участвовать в обсуждениях могут только зарегистрированные пользователи.

Простые зарядные устройства с ручной регулировкой

Начнем с простых устройств, позволяющих вручную регулировать параметры зарядки. Поскольку большинство аккумуляторных батарей легковых автомобилей имеет емкость не более 100-120 Ач, зарядного устройства, обеспечивающего ток до 10 ампер, будет вполне достаточно.

Простой регулятор с балластными конденсаторами

Сделать такое зарядное устройство, не имеющее дефицитных деталей, сможет каждый, умеющий пользоваться мультиметром и держать в руках паяльник. Взглянем на схему, приведенную ниже.

Схема зарядного устройства

Схема простого зарядного устройства с балластными конденсаторами

Устройство состоит из понижающего трансформатора Tr1, мощного выпрямителя, собранного на диодах VD1-VD4 и набора конденсаторов разной емкости С1-С4. Каждый из конденсаторов может включаться в цепь питания трансформатора при помощи отдельного выключателя S2-S4. Емкости конденсаторов подобраны так, что каждый последующий обеспечивает выходной ток ЗУ вдвое больший, чем предыдущий.

В зависимости от номинала и количества подключенных конденсаторов будет изменяться выходное напряжение, а значит, и зарядный ток. Комбинируя конденсаторы выключателями S2-S4, можно изменять зарядный ток от 1 до 15 А с шагом 1 А, что более чем достаточно для зарядки любой АКБ.

Напряжение на клеммах аккумуляторной батареи, подключенной к клеммам XS2, XS3, можно контролировать при помощи вольтметра PU1. Величину зарядного тока покажет амперметр PA1. Выключателем питания служит тумблер S1.

В конструкции можно использовать любой сетевой трансформатор (можно самодельный), обеспечивающий ток не менее 10 А при выходном напряжении 22-24 В. Диоды Д305 можно заменить на любые выпрямительные, рассчитанные на прямой ток не менее 10 А и выдерживающие обратное напряжение не ниже 40 В. Диоды выпрямительного моста необходимо установить на изолированные друг от друга радиаторы с площадью рассеяния не менее 100 см2 каждый.

Важно! Если полупроводники будут устанавливаться на один общий радиатор, то это нужно делать через изолирующие слюдяные прокладки. При этом рассеиваемая площадь радиатора выбирается не менее 300 см2 .

Конденсаторы C2-C4 – неполярные, бумажные, рассчитанные на рабочее напряжение не ниже 300 В. Подойдут, к примеру, МБГЧ, МБГО, КБГ-МН, МБМ, МБГП, которые широко использовались в качестве фазосдвигающих для асинхронных двигателей бытовой техники. На месте PU1 может работать любой вольтметр постоянного тока с пределом измерения 30 В. PA1 – амперметр с пределом измерения 20-30 А, в качестве которого удобно использовать любой микроамперметр с соответствующим шунтом.

С плавной регулировкой тока зарядки

Следующая схема сложнее, где в качестве регулирующего элемента использует тиристор. Преимущество данной конструкции – плавная регулировка выходного напряжения, а значит, и зарядного тока. Диапазон регулировки – 0-10 А. Принцип работы СЗУ – фазоимпульсное управление ключом (тиристором).

Схемы самодельного зарядного устройства с регулировкой тока и напряженияСхема импульсного зарядного устройства

Прибор состоит из силового трансформатора T1, выпрямительного моста, собранного на мощных диодах VD1-VD4, и схемы регулировки тока, собранной на транзисторах VT1, VT2 и тиристоре VS1. Переменное напряжение величиной 18-22 В поступает со вторичной обмотки силового трансформатора на выпрямительный мост. Выпрямленное, оно подается на схему регулировки. В начале полуволны начинает заряжать конденсатор С2. Скорость его зарядки можно плавно регулировать переменным резистором R1.

Как только конденсатор зарядится до определенной величины, откроется аналог однопереходного транзистора, собранный на элементах VT1, VT2. Конденсатор быстро разрядится через управляющий электрод тиристора, последний откроется и будет находиться в таком состоянии до окончания этой полуволны. При появлении следующей процесс повторится.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Таким образом, при каждой полуволне тиристор будет открываться с той или иной задержкой (зависит от времени заряда конденсатора С2), отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет приложено к клеммам аккумулятора, а значит, и зарядный ток будет ниже.

В качестве силового подойдет любой сетевой трансформатор с напряжением на вторичной обмотке 18-22 В при токе не менее 10 А. На месте VT1, кроме указанного, могут работать КТ361Б-КТ361Е, КТ502Г, КТ502В, КТ3107А, КТ501Ж-KT501K. Вместо КТ315А подойдут КТ315Б-Д, КТ3102А, КТ312Б,  КТ503В-Г, П307. В качестве С2 могут использоваться конденсаторы типа МБГП, К73-17, К42У-2, К73-16, К73-11 емкостью 0.47-1 мкФ. Вместо КД105Б подойдут КД105В, КД105Г или Д226 с любой буквой. Переменный резистор R1 типа СПО-1, СП-1, СПЗ-30а.

Амперметр PA1 – любой с током полного отклонения 10 А. Вместо мощных выпрямительных диодов Д245 подойдут любые из серий КД213, КД203, Д245, КД210, Д242, Д243, выдерживающие ток не менее 10 А и обратное напряжение на ниже 50 В. Их необходимо установить на радиаторы площадью не менее 100 см2. Тиристор КУ202В можно заменить на КУ202Г-Е и даже на Т-160 или Т-250. Он тоже устанавливается на радиатор.

Полезно! Если выходное напряжение трансформатора несколько выше 22 В (скажем, 24-28 В), то можно использовать и его. Единственное, при этом необходимо номинал резистора R5 увеличить до 200 Ом.

С зарядкой ассиметричным током

Это зарядное устройство имеет предел регулировки тока от 0 до 10 А и производит зарядку ассиметричным током, при котором определенное время батарея заряжается, а остальную часть – разряжается током около 600 мА. Это существенно продлевает жизнь АКБ и предотвращает сульфатацию.

Схемы самодельного зарядного устройства с регулировкой тока и напряженияСхема СЗУ с зарядкой ассиметричным током

Здесь регулировка зарядного тока производится по высокому переменному напряжению при помощи симметричного тиристора (симистора). Принцип регулировки тот же, что и в предыдущей схеме, – фазоимпульсное управление. Но схема регулятора выглядит и работает несколько иначе.

В начале положительной полуволны зарядка конденсатора С2 происходит через резистор R3 и диод VD1 диодного моста VD1-VD4. Как только конденсатор зарядится до напряжения зажигания газоразрядной лампы HL1 (время зарядки зависит от положения движка переменного резистора R1), последняя зажжется. Конденсатор быстро разрядится через управляющий электрод симистора, и он откроется, подавая напряжение на сетевую обмотку понижающего трансформатора Т1.

В таком состоянии симистор будет находиться до окончания полупериода. При отрицательной полуволне конденсатор будет заряжаться через резистор R5 и диод VD2. При этом полярность напряжения будет противоположной предыдущей. Снова разряд в лампе, тиристор открывается, пропуская на обмотку уже отрицательную полуволну.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Любопытно! Резисторы R3 и R5 исполняют еще одну немаловажную роль. Они попеременно через диоды VD3 и VD4 шунтируют сетевую обмотку трансформатора. Это предотвращает закрывание симистора сразу после короткого открывающего импульса на время, пока ток в обмотке Т1, являющейся индуктивной нагрузкой, не установится выше тока удержания симмитричного тиристора.

Пониженное напряжение, величина которого зависит от положения движка R1, выпрямляется диодами VD5, VD6 и подается на клеммы аккумуляторной батареи, производя ее зарядку выбранным нами током. После закрытия симистора и до следующего его открытия батарея разряжается через нагрузочный резистор R6, обеспечивающий разрядный ток порядка 600 мА.

Зарядный ток можно контролировать при помощи амперметра PA1, прибор PV1 показывает напряжение на клеммах АКБ.

Важно! Устанавливая величину зарядного тока по амперметру, необходимо учитывать и ток (600 мА), протекающий через резистор R6. То есть, если мы установим на приборе 6 А, фактический зарядный ток, протекающий через АКБ, будет составлять 6 – 0.6 = 5.4 А.

О деталях. В качестве сетевого подойдет любой трансформатор соответствующей мощности (выдаваемый ток не менее 10 А) с выходным напряжением 20 В и отводом от середины. Если вторичная обмотка не имеет отвода от середины, то можно использовать выпрямитель, собранный по мостовой схеме. Диоды VD5, VD6 – любые мощные выпрямительные на ток не менее 10 А и обратное напряжение не ниже 40 В.

VD1-VD4 можно заменить на любые выпрямительные, выдерживающие ток не менее 200 мА и напряжение 300 В. Конденсаторы С1, С2 – пленочные или бумажные, неполярные. Симистор можно заменить на КУ208В. Амперметр PA1 имеет предел измерения 15-20 А, вольтметр PV1 – 20 В. Мощные выпрямительные диоды VD5, VD6 и симистор VS1 необходимо установить на радиаторы. При этом диоды можно установить на общий радиатор без изолирующих прокладок. Диоды VD1-VD4 в радиаторе не нуждаются.

Параметры зарядного устройства

  • Выходное напряжение 1 — 15 В
  • Предельный ток до 8 А
  • Защита от перезаряда аккумулятора.
  • Защита от случайной короткого замыкания выхода
  • Защиты против смены полярности

Зарядное устройство на тиристоре своими руками

Существует множество электронных схем, в том числе и непростых, с полным набором регулировок и защиты, солидным количеством деталей, зачастую недешёвых. Но большинство автолюбителей отдаёт предпочтение простым зарядным устройствам на тиристоре, из нескольких недорогих компонентов, которые зачастую можно извлечь из отработавшей своё аппаратуры, например компьютера.

Выбор схемы и принцип её работы

Сначала стоит отметить главное достоинство предлагаемой схемы тиристорного зарядного устройства: доступность и малые финансовые затраты. Есть и иные преимущества при использовании в качестве главного компонента недорогого тиристора КУ202:

  1. Хороший зарядный ток до 10 А.
  2. Выдаваемая энергия – импульсного типа, что продлевает эксплуатационный ресурс заряжаемой батареи.
  3. Для сборки понадобятся широко распространённые недорогие детали, найти которые не составит труда.
  4. Схему тиристорного зарядного устройства для автомобильного аккумулятора просто повторить даже автолюбителю, малосведущему в радиотехнике, а опытному электронщику потребуется и вовсе не более часа, чтобы запустить устройство в эксплуатацию.

По принципу действия это фазоимпульсный регулятор мощности, выполненный на тиристоре и позволяющий изменять силу тока. Управляющий электрод КУ202 питает транзисторная цепь. Чтобы защитить схему тиристорного зарядного устройства для автомобильного аккумулятора от токовых скачков, используется диод VD2. Сопротивление R5 оказывает влияние на зарядный ток, значение которого, как известно, 1/1 от ёмкости АКБ. Для питания схемы понадобится трансформатор, уменьшающий сетевое U = 220 В до 18–22 В. Если в вашем распоряжении оказался трансформатор с большим напряжением на выходе, сопротивление R7 нужно увеличить ориентировочно до 2-х кОм (возможно, резистор придётся подбирать). Диоды выпрямительного моста и тиристор необходимо устанавливать на алюминиевые радиаторы, чтобы исключить перегрев деталей. При монтаже обычных элементов типа Д242–245 не забывайте под корпус подложить изоляционную шайбу.

Принципиальная схема тиристорного зарядного устройства для автомобильного аккумулятора выглядит следующим образом:

Самостоятельное изготовление простых зарядных устройств, выполненных на тиристоре

Так как схема простая, в ней отсутствует электронная защита: её роль играет предохранитель, устанавливаемый на выходе. При зарядке батарей ёмкостью не более 60 А*ч хватит плавкой вставки номиналом 6,3 А. Установка последовательно подсоединяемого прибора – амперметра поможет контролировать процедуру зарядки. Ниже показана печатная плата, упрощающая сборку ЗУ:

Самостоятельное изготовление простых зарядных устройств, выполненных на тиристоре

Перечень компонентов в схеме и подбор возможных аналогов

В схеме использован электролитический конденсатор, выдерживающий напряжение не менее 63 В. Мощность резисторов R1-R6 – 0,25 Вт, R7 – 2 Вт. Диоды в выпрямительном мосту пропускают ток до10 А и держат обратное U от 50 В. Такое же напряжение должен выдерживать импульсный диод VD2. Транзисторы VT1 и VT2: КТ3107, КТ502, КТ361 и КТ503, КТ315, КТ3102 соответственно.

Расчёт параметров трансформатора, тиристора и диодов

Одна из отрицательных сторон зарядки на тиристоре – низкий КПД, отчасти обусловленный вторичной обмоткой трансформатора, которая должна свободно пропускать ток, в три раза больший, чем потребляемая АКБ мощность. Как это исправить? Для этого можно тиристор переставить из обмотки II трансформатора в обмотку I, как это показано на схеме тиристорного зарядного устройства для АКБ:

Самостоятельное изготовление простых зарядных устройств, выполненных на тиристоре

Вся разница этого ЗУ на тиристоре для автомобильных аккумуляторов заключается в подключении диодного моста и регулирующего тиристора в первичную обмотку трансформатора. Так как ток обмотки II приблизительно меньше зарядного в 10 раз, то тепловой энергии на диодах и тиристоре выделяется совсем мало: можно даже не использовать охлаждающие радиаторы (но это не относится к VD5-VD8).

Компоненты и их аналоги:

  • выпрямительный блок КЦ402,405 с любым индексом (А, Б, В);
  • стабилитрон типа КС524, КС518, КС522;
  • транзистор КТ117 с буквами от «Б» до «Г»;
  • диодный мост, стоящий на выходе, должен состоять из компонентов, рассчитанных на 10 А (Д242-247).

Функциональное описание схемы

Переменное напряжение от вторичной обмотки трансформатора (около 17 В) подается на управляемый тиристорно-диодный мост, далее в зависимости от импульсов управления, следующих от контроллера, оно подается на клеммы аккумулятора.

Контроллер состоит из отдельного сетевого трансформатора, его напряжение формируется стабилизатором LM7812, двойной мультивибратор CD4538 делает управляющие импульсы на тиристорах, и имеет цепи контроля напряжения аккумуляторной батареи, состоящие из оптрона CNY17 и источника опорного напряжения TL431, работающего в качестве компаратора.

Если напряжение на выходе TL431 (R) ниже 2,5 В (система делителя с PR2 с резисторами), ток не протекает через TL431 через LED2 и CNY17 из-за блокировки транзистора BC238, что приводит к высокому состоянию на входе сброса выв.13 микросхемы CD4538 и её нормальной работе (если управляющие импульсы направляются на затворы тиристора), если напряжение увеличивается (в результате зарядки батареи), тогда начинает действовать TL431, ток прекращает течь через LED2 и CNY17, BC238 срабатывает и низкое состояние подается на выв.13, генерация управляющих импульсов на затворе тиристора прекращается, и напряжение на аккумуляторе отключается. Напряжение отключения устанавливается PR4 на уровне 14,4 В. Светодиод LED1 во время зарядки становится все более и более частым и почти на финальной стадии.

Также использовались 2 датчика температуры 80 C. Один приклеен к радиатору, а другой — к вторичной обмотке сетевого трансформатора, датчики соединены последовательно. Активация датчика приводит к отключению напряжения на оптопаре и блокировке мультивибратора CD4538 и отсутствию сигналов управления затворами тиристора.
Вентилятор постоянно подключен к аккумуляторной батарее.

Схема имеет переключатель AUT / MAN в положении MAN, при этом автоматическая система контроля напряжения аккумулятора отключена, и аккумулятор можно заряжать вручную, контролируя напряжение.

Вот несколько вариантов схем подключения выпрямителей и тиристоров:

Зарядное для авто аккумуляторов на тиристоре

  • Схема на рис. A. Наименее благоприятное включение, высокое падение напряжения и сильный нагрев моста плюс потери на тиристоре. Преимущества: можно использовать один радиатор, потому что выпрямительные мосты обычно изолированы от корпуса.
  • Схема на рис. Б наиболее выгодна, потери только на тиристорах. Но два радиатора.
  • Схема на рис. С умеренно выгодна. Три или один радиатор (с одним радиатором, одним двойным диодом Шоттки или двумя диодами с катодом на корпусе.

Это нормальные напряжения на выводах чипа CD4538:

1 — 0 В
2 — от 11,5 В до 6 В при повороте потенциометра P
3,16 — 12 В
4,6,11 — от 2 В до 12 В при повороте P
5 — приблизительно 10 В
10,12 — около 0,1 В
13 — около 11,5 В с выключенным LED1
14 — около 12 В
15 — 0

В коллекторе BD135 около 19,9 В. Для более детальной настройки понадобится осциллограф. Схема довольно проста и при правильной сборке должна запускаться сразу после подачи напряжения.

Недостатки ЗУ на тиристорах

У простой схемы есть существенный минус – отсутствие электронной защиты от переполюсовки, КЗ и перегрузок. Отчасти эту функцию выполняет плавкий предохранитель, что не очень удобно. При желании и достаточном опыте можно собрать дополнительную схему защиты и подключить её отдельно.

Второй недостаток – гальваническая связь настроечного блока с сетью. Его можно устранить, если использовать регулировочное сопротивление с пластиковой осью.

И ещё один минус – необходимость установки охлаждающих радиаторов (лучше использовать ребристые алюминиевые изделия). Частично проблема решается использованием схемы с включением регулирующего модуля в обмотку I питающего трансформатора.

Подводя итог, скажем, что тиристорное зарядное устройство своими руками собрать не так сложно, как может показаться с первого взгляда. Упорство и затраченное время будут вознаграждены недорогим качественным ЗУ с плавной регулировкой силы тока, продлевающей жизнь аккумулятору.

Фото процесса изготовления зарядки

Зарядное для авто аккумуляторов на тиристоре

Зарядное для авто аккумуляторов на тиристоре

Диодно-тиристорный мост размещен на отдельных платах и может проводить ток до 20 А, радиаторы изолированы друг от друга и корпуса. Вторичная обмотка трансформатора намотана проволокой диаметром около 2 мм, и при принудительном охлаждении она может дать долговременно около 8 А (достаточно для большинства нужд автолюбителей, заряжая батареи до 82 А/ч). Но ничего не мешает установить трансформатор с ещё большей мощностью.

Зарядное для авто аккумуляторов на тиристоре

Зарядное для авто аккумуляторов на тиристоре

Тут использованы отдельные измерительные провода, которые подключаются к токовым клеммам.

Зарядное для авто аккумуляторов на тиристоре

Зарядное для авто аккумуляторов на тиристоре

Зарядка АКБ: зарядный ток составляет 1/10 от емкости батареи, через некоторое время, в зависимости от степени разряда, LED1 начинает мигать и вскоре приближается к напряжению 14,4 В. Чаще всего зарядный ток тоже падает, в конце зарядки диод светит почти все время. Небольшой гистерезис вводится электролитическим конденсатором на R-выводе TL431.

Стоимость сборки самодельной ЗУ определяется основным трансформатором (160 Вт, 24 В) примерно 1000 руб., а также мощными диодами и тиристорами. Обычно этого добра в радиолюбительских закромах хватает (как и готовых корпусов от чего-то), так что в идеале оно не будет стоить ни копейки.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...