Условие прочности при растяжении-сжатии – Теория и решение задач

Условие прочности при растяжении-сжатии гласит: для того чтобы стержень оставался прочным, напряжения σ в его сечениях не должны превышать допустимых значений [σ].

Три задачи расчета на прочность

Данное условие прочности позволяет решать три основных задачи сопротивления материалов и технической механики:

Проверка на прочность.

В случае, когда известны внешние нагрузки, а также размеры и материал стержня можно выполнить проверку его прочности. Для этого по каждому участку рассчитывается величина нормальных напряжений σ, после чего максимальная из них сравнивается с заданным допустимым значением [σ].

Проверка на прочность при растяжении-сжатии

Ответ в данной задаче дается в виде заключения:

  • если σmax  [σ] стержень прочный,
  • если σmax > [σ] стержень непрочный.

Подбор размеров сечения (проектировочный расчет)

Эта задача является основной в технической механике. Здесь, по известным схеме нагружения и материалу стержня определяется минимально необходимая площадь поперечного сечения A обеспечивающая его прочность.

Для этого условие прочности записывается относительно искомой величины.

Проектировочный расчет при растяжении-сжатии

Полученные размеры в случае необходимости можно только увеличивать. Уменьшение размеров приведет к превышению напряжениями допустимых значений.

Определение грузоподъемности стержня.

Данная формула позволяет по известным размерам и материалу рассчитать величину допустимой внутренней силы, которую может выдержать стержень, оставаясь прочным.

Определение грузоподъемности стержня при растяжении-сжатии

В данном случае условие прочности записано относительно внутренней силы N.

Напряжения при растяжении-сжатии >
Расчеты на прочность при растяжении-сжатии >

Напряжения при растяжении и сжатии

При растяжении и сжатии в сечении действует только нормаль­ное напряжение.

Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади.

Таким образом, направление и знак напряжения

в сечении

сов­падают с направлением и знаком силы в сечении (рис. 20.3).

Исходя из гипотезы плоских сечений, можно предположить, что напряжения при растяжении и сжатии в пределах каждого сечения не меняются. Поэтому напряжение можно рассчитать по форму­ле

где Nz

— продольная сила в сечении;

А — площадь поперечного сечения.

Величина напряжения прямо пропорциональна продольной силе и обратно пропорциональна площади поперечного сечения.

Нормальные напряжения действуют при растяжении от сечения (рис. 20.4а

), а при сжатии к сечению (рис. 20.4

б ).

Размерность (единица измерения) напряжений — Н/м2 (Па), од­нако это слишком малая единица, и практически напряжения рас­считывают в Н/мм2 (МПа):

1 МПа = 106 Па =1 Н/мм2.

При определении напряже­ний брус разбивают на участки нагружений, в пределах которых продольные силы не изменяются, и учитывают места изменений площади поперечных сечений.

Рассчитывают напряжения по сечениям, и расчет оформляют в виде эпюры нормальных напряжений.

Строится и оформляется такая эпюра так же, как и эпюра про­дольных сил.

Рассмотрим брус, нагру­женный внешними силами вдоль оси (рис. 20.5).

Обнаруживаем три уча­стка нагружения и определяем величины продольных сил.

Участок 1: N1 = 0.

Внут­ренние продольные силы равны нулю.

Участок

2:

N2 = 2

F. Продольная сила на участке положительна.

Участок 3: N3 = 2F – 3F = — F.

Продольная сила на участке отрицательна.

Брус – ступенчатый.

С учетом изменений величин площади поперечного сечения участков напряжений больше.

Строим эпюры продольных сил и нормальных напряжений.

Масштабы эпюр могут быть разными

и выбираются исходя из удобства построения.

Примеры решения задач

Пример 1. Ступенчатый брус нагружен вдоль оси двумя силами. Брус за­щемлен с левой стороны (рис. 20.6). Пренебрегая весом бруса, по­строить эпюры продольных сил и нормальных напряжений.
Решение

— Определяем участки нагружения, их два.

— Определяем продольную силу в сечениях 1 и 2.

— Строим эпюру.

— Рассчитываем величины нормальных напряжений и строим эпюру нормальных напряжений в собственном произвольном мас­штабе.

1. Определяем продольные силы.

В обоих сечениях продольные силы положительны.

2. Определяем нормальные напряжения

Сопоставляя участки нагружения с границами изменения пло­щади, видим, что образуется 4 участка напряжений.

Нормальные напряжения в сечениях по участкам:

Откладываем значения напряжений вверх от оси, т. к. значения их положительные (растяжение). Масштаб эпюр продольной силы и нормальных напряжений выбирается отдельно в зависимости от порядка цифр и имеющегося на листе места.

Пример 2. Для заданного бруса (рис. 2.5, а

) построить эпюры продольных сил и нормальных напряжений.


Решение

Заданный брус имеет четыре участка I, II, III, IV (рис. 2.5, а

). Границами участков являются сечения, в которых приложены внешние силы, а для напряжений также и места изменения размеров поперечного сечения.

Пользуясь методом сечений, строим эпюру продольных сил (рис. 2.5, б

).

Для построения эпюры нормальных напряжений определяем их в поперечных сечениях каждого из участков:

Эпюра σ

представлена на рис. 2.5,

в.Пример 3. Определить количество деревянных стоек сечением 10×10 см, необходимых для поддержания, цистерны, вмещающей V =

40 м3 воды. Масса цистерны Мц = 7,2-103 кг. Допускаемое напряжение [σ] = 13 Н/мм3. При расчете считать, что усилия в стойках одинаковы.

Решение

Требуемая площадь поперечного сечения стоек

где (fст

— площадь поперечного сечения одной стойки;

i — число стоек);

N

— усилие, передающееся на стойки.

где

— сила тяжести цистерны;

=

ц = 9,81 * 7,2*103 =70,7*103 Н;

— сила тяжести воды;

= уV = 10*40 = 400 кН (у = 10 кН/м3 — объемная сила тяжести воды). Подставляя числовые значения, получаем

Тогда

откуда находим требуемое число стоек:

Принимаем i

= 4.

Пример 4. Для заданной стержневой системы (рис. 2.6, а)

определить из расчета на прочность требуемые площади сечения стержней и подобрать по ГОСТ 8509—72 соответствующий номер угловой равнополочной стали, учитывая, что каждый стержень изготовлен из двух равнополочных уголков.

Для принятых сечений стержней определить расчет­ные напряжения н указать расхождения (в процентах) с допускаемым значением напряжения [σ] = 160 Н/мм3.

Решение

Здесь требуется подобрать сечения стержней исходя из условий:

где N1

и

N2 — усилия, возникающие соответственно в стерж­нях

1 и

2 .

1. Усилия N1

и

N2 во всех поперечных сечениях стерж­ней одинаковы и площади этих сечений постоянны. Таким образом, все сечения каждого стержня равноопасны.

2. Определяем усилия в стержнях из рассмотрения равно­весия узла В,

где приложены заданные силы

Р1 и

Р2 (рис. 2.6, б). Освобождаем эту точку от связей и прикла­дываем их реакции

N1 и

N2, равные усилиям в стерж­нях. Получаем плоскую систему сходящихся сил. Для упрощения уравнений равновесия координатные оси

ху направляем вдоль неизвестных усилий

N1 и

N2 . Состав­ляем уравнения равновесия:

Откуда

Тогда

По таблицам ГОСТ 8509—72 подбираем сечения стерж­ней:

для первого стержня угловую равнополочную сталь 36x36x4

для второго стержня угловую равнополочную сталь 28x28x3

Вычислим напряжения в поперечных сечениях стерж­ней при принятых площадях

что больше [σ

] на

такое превышение допустимо;

что меньше [σ

] на

Пример 5. Определить размеры поперечных сече­ний стержней (рис. 2.7, а),

если допускаемые напря­жения для стали [

σ сх] = 140 Н/мм2, для дерева [

σд ] = 13 Н/мм2.

Решение

Рассматри­ваем равновесие шарни­ра А,

так как к этому шарниру приложены за­данная нагрузка и иско­мые усилия в стержнях.

1. Освобождаем шарнир А

от связей и заменяем их действие реакциями

N 1 и

N 2. Действующие на шарнир

А нагрузка и ис­комые усилия показаны на рис. 2.7,

б . Получили плоскую систему сходящихся сил, которая находится в равновесии.

2. Выбираем систему координат и составляем уравнения равновесия:

откуда

Требуемые площади поперечных сечений стержней

Откуда


Пример 6. Однородная балка АВ

поддерживается тремя стальными стержнями

1, 2, 3 круглого поперечного сечения

d = 20 мм (рис. 2.8). Сила тя­жести балки

Q = 10 кН. Найти до­пускаемую интенсив­ность [

q ] равномерно распределенной на­грузки, если допус­каемое напряжение для материала стерж­ней [

σ ] =160 Н/мм2.

Решение

1. Определим усилия, возникающие в стержнях. Под действием силы Q

, равномерно распределенной на­грузки

q и усилий

N1, N2 и

N3 в стержнях балка нахо­дится в равновесии.

2. Составляем уравнения равновесия:

3. Решая полученные уравнения, находим:

N3

больше, чем

N1 и

N2 . Следовательно, опасными являются поперечные сечения стержня 3.

4. Условие прочности для стержня 3:

Подставляем значение N3:

5. Решая относительно ц и подставляя числовые значе­ния, получаем:

где

Пример 7. Стальной стержень круглого сечения диаметром d

= 20 мм растягивается силой Р = 65 кН. Проверить прочность стержня, если его предел текучести σ = σт = 300 Н/мм2 и требуемый коэффициент запаса [

n ] = 1,5.

Решение

Напряжения, возникающие в поперечном сечении стержня,

Расчетный коэффициент запаса

Следовательно, можно считать, что прочность стержня достаточна, так как расчетный коэффициент запаса незначительно (на 3%) меньше требуемого.

Контрольные вопросы и задания

  1. Какие внутренние силовые факторы возникают в сечении бру­са при растяжении и сжатии?
  2. Как распределяются по сечению силы упругости при растя­жении и сжатии? (Использовать гипотезу плоских сечений.)
  3. Какого характера напряжения возникают в поперечном сече­нии при растяжении и сжатии: нормальные или касательные?
  4. Как распределены напряжения по сечению при растяжении и сжатии?
  5. Запишите формулу для расчета нормальных напряжений при растяжении и сжатии.
  6. Как назначаются знаки продольной силы и нормального на­пряжения?
  7. Что показывает эпюра продольной силы?
  8. Как изменится величина напряжения, если площадь попереч­ного сечения возрастет в 4 раза?
  9. В каких единицах измеряется напряжение?

ЛЕКЦИЯ 21

( 2 оценки, среднее 5 из 5 )

Внутренние усилия при растяжении и сжатии

При приложении к брусу с постоянным сечением внешних воздействий, действие которых в любом поперечном разрезе направлено параллельно его центральной оси и перпендикулярно сечению, с ним происходит следующий вид деформации: растяжение или сжатие.  На основе гипотезы о принципе независимости внешнего воздействия для каждого из поперечных разрезов можно рассчитать внутреннее усилие как векторную сумму всех приложенных внешних воздействий. Растягивающие нагрузки в сопромате принято считать положительными, а сжимающие отрицательными.

Рассмотрев произвольный разрез бруса или стержня, можно сказать что внутренние напряжения равны векторной сумме всех внешних сил, сгруппированных по одной из его сторон. Это верно только с учетом принципа Сен-Венана (фр. инженер А. Сен-Венан, 1797-1886) о смягчении граничных условий, т.к. распределение внутренних усилий по поверхности разреза носит сложный характер с нелинейными зависимостями, но в данном случае значением погрешности можно пренебречь как несущественным.

Применяя гипотезу Бернулли (швейцарский математик, И. Бернулли, 1667-1748) о плоских сечениях, для более наглядного представления процессов распределения сил и напряжений по центральной оси бруса можно построить эпюры. Визуальное представление более информативно и в некоторых случаях позволяет получить необходимые величины без сложных расчетов. Графическое представление отражает наиболее нагруженные участки стержня, инженер может сразу определить проблемные места и ограничиться расчетами только для критических точек.

Определение деформации растяжения

Все вышесказанное может быть применимо при квазистатической (система может быть описана статически) нагрузке стержня с постоянным диаметром. Потенциальная энергия системы на примере растяжения стержня определяется по формуле:

U=W=FΔl/2=N²l/(2EA)

Потенциальная энергия растяжения U концентрируется в образце и может быть приравнена к выполнению работы W (незначительное выделение тепловой энергии можно отнести к погрешности), которая была произведена силой F для увеличения длины стержня на значение абсолютного удлинения.  Преобразуя формулу, получаем, что вычислить значение величины потенциальной энергии растяжения можно, рассчитав отношение квадрата продольной силы N помноженной на длину стержня l и удвоенного произведения модуля Юнга E материала на величину сечения A.

Внутренние усилия при растяжении и сжатии

Как видно из формулы, энергия растяжения всегда носит положительное значение, для нее невозможно применить гипотезу о независимости действия сил, т.к. это не векторная величина. Единица измерения – джоуль (Дж). В нижней части формулы стоит произведение EA – это так называемая жесткость сечения, при неизменном модуле Юнга она растет только за счет увеличения площади. Величина отношения жесткости к длине бруса рассматривается как жесткость бруса целиком.

Деформации при растяжении сжатии

При растяжении/сжатии бруса могут возникать 2 вида деформации. Первый – упругая, второй – пластическая. Для упругой деформации характерно восстановление первоначальных параметров после прекращения воздействия. В случае пластической стадии деформации материала он утрачивает и не восстанавливает форму и размеры. Величина воздействия для перехода одного вида в другой называется пределом текучести.

Для расчета перемещения при растяжении бруса или стержня следует использовать метод разделения на участки, в рамках которых осуществляется приложение внешних воздействий. В точках воздействия силы следует вычислить величину изменения длины, используя формулу: Δl=Nl/EA. Как видно она зависит от жесткости сечения, длины бруса или стержня и величины действующей продольной силы. Итоговым перемещением для бруса целиком будет сумма всех частичных перемещений, рассчитанных для точек приложения силы.

Деформации при растяжении сжатии

Поперечные деформации бруса (становится более толстым при сжатии и тонким при растяжении) также характеризуются абсолютной и относительной величиной деформации. Первая – разность между размером сечения после и до приложения внешних воздействий, вторая – отношение абсолютной деформации к его исходному размеру. Коэффициент Пуассона, отражающий линейную зависимость продольной и поперечной деформаций, определяет упругие качества материалов и считается неизменным для растяжения и сжатия. Продольные наиболее наглядно отражают процессы, происходящие в брусе или стержне при внешнем воздействии. Зная величину любой из них (продольной или поперечной) и используя коэффициент Пуассона, можно рассчитать значение неизвестной.

Для определения величины деформации пружины при растяжении можно применить закон Гука для пружин:

F=kx

В данном случае х – увеличение длины пружины, k – коэффициент жесткости (единица измерения Н/м), F – сила упругости, направленная в противоположную от смещения сторону. Величина абсолютной деформации будет равна отношению силы упругости к коэффициенту жесткости. Коэффициент жесткости определяет упругие свойства материала, используемого для изготовления, может быть использован для выбора материала изготовления в условиях решения конкретной задачи.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...