Виды фрезеровок: узнайте подробнее об особенностях каждого вида.

Фрезерная обработка в последнее время набирает большую популярность, поэтому столь же востребована, как сверление деталей и токарная обработка.

1. Схемы обработки поверхностей на станках фрезерной группы

Рассмотрим схемы обработки поверхностей на универсальных горизонтально-фрезерном (ГФС; имеет горизонтальную ось вращения фрезы) и вертикально-фрезерном (ВФС; имеет вертикальную ось вращения фрезы) станках.

Горизонтальные плоскости фрезеруют цилиндрическими фрезами на ГФС (рис. 24, а) или торцевыми фрезами на ВФС (рис. 25, а). Горизонтальные плоскости чаще обрабатывают торцевыми насадными фрезами, так как они имеют более жесткое закрепление и обеспечивают плавное, безвибрационное резание. При большой ширине обрабатываемой плоскости используют торцевые фрезы и обработку ведут в несколько последовательных рабочих ходов. Узкие горизонтальные плоскости удобно обрабатывать концевыми фрезами.

Вертикальные плоскости на ГФС обрабатывают торцевыми насадными фрезами (рис. 24, б) или фрезерными головками, а на ВФС – концевыми фрезами (рис. 25, б). Большие по высоте вертикальные плоскости удобнее обрабатывать на ГФС с использованием вертикальной подачи. Обработку небольших по высоте вертикальных плоскостей можно производить на ГФС с помощью концевых или дисковых фрез. Наклонные плоскости небольшой ширины обрабатывают на ГФС одноугловой фрезой.

Широкие наклонные плоскости обрабатывают на ВФС с поворотом шпиндельной головки (рис. 25, в) торцевой насадной или концевыми фрезами. Одновременную обработку нескольких поверхностей (вертикальных, горизонтальных и наклонных) ведут на ГФС (рис. 24, г), установив на оправку набор фрез.

Обработка плоскостей на ГФС

Рис. 24. Обработка плоскостей на ГФС: а – горизонтальных; б – вертикальных; в – наклонных; г – нескольких плоскостей одновременно; д – уступов; Dr – движение резания; Ds – движение подачи

Обработка на ВФС плоскостей

Рис. 25. Обработка на ВФС плоскостей: а – горизонтальных; б – вертикальных; в – наклонных; г – уступов

Фрезерование пазов

Рис. 26. Фрезерование пазов: а, б – прямоугольных; в – полукруглых; г – типа «ласточкин хвост»; д – Т-образных; е, ж – шпоночных

Горизонтальные уступы и пазы обрабатывают дисковыми односторонними (рис. 24, д) и трехсторонними (рис. 26, а) фрезами на ГФС или концевыми фрезами (рис. 25, г; 26, б) на ВФС.

Фасонные пазы с криволинейной образующей обрабатывают на ГФС фасонными дисковыми фрезами (рис. 26, в). Пазы типа «ласточкин хвост» или Т-образные обрабатывают на ВФС (рис. 26, г, д). Вначале концевой фрезой получают прямоугольный паз, затем используют концевую одноугловую фрезу или специальную концевую фрезу для Т-образных пазов.

Шпоночные пазы для сегментных шпонок фрезеруют на ГФС дисковой трехсторонней фрезой (рис. 26, е), для прямоугольных шпонок – на ВФС концевой фрезой (рис. 26, ж).

Назначение фрезерной обработки

При помощи различного вида фрез, можно более точно и качественно выполнять фрезеровку деталей. Это могут быть различные материалы, но наиболее распространенная обработка на металлах. А при помощи современных станков, оборудованных системами ЧПУ, есть возможность уменьшить количество брака, а также управлять при помощи не сложных числовых программ. Сейчас фреза заменена на лезвие в качестве рабочего инструмента, что и позволило уменьшить вероятность брака, делая заготовки максимально точно.

Для чего же нужна в обработке фрезеровка? При её помощи можно проводить отрезку в металлах, шлифовать, наносить специальные узоры, гравировать, а также делать токарные и другие работы в разных видах деятельности. В набор входит несколько многозубчатых, режущих фрез, а их крепление в станках определяет горизонтальный или вертикальный тип работы. В производстве также может использоваться фрезерование под некоторым углом, для чего предварительно устанавливают фрезу в необходимом направлении. В зависимости от вида обрабатываемой продукции, такое фрезерование имеет несколько способов. Но стоит отметить, что используется немалое количество разнообразных фрез, в частности это цилиндрические, торцевые, концевые, зубчатые, фасонные, а также более сложные.

Сферы применения фрезеровки довольно разнообразны, она может использоваться в металлообработке, машиностроении, в ювелирном производстве, деревообработке и даже в дизайне и архитектуре.

Обработка металла фрезерованием производится вне зависимости от его прочности. Фрезы выбирают, исходя из того, какая нужна обработка, для плоскостей используют цилиндрические или торцевые типы фрез, в последних подбирают несимметрические схемы резания. То есть если детали правильной прямоугольной, квадратной и подобной формы, то чаще всего применяется два эти способа. Одинаковую профильную деталь можно сделать цилиндрической фрезой или с торца.

Фрезерование металла

Фрезерная резка алюминия считается в наше время довольно популярной, так как алюминий широко используется в эксклюзивном дизайне, интерьере, для рекламных элементов, операторской техники и пр. Благодаря его легкости, прочности и низкой температуре плавления, он широко используется и с него не сложно вырезать различные изделия. На деталях сувенирных изделий, маркетинговой и кухонной продукции на современных высокотехнологических станках можно делать надписи, узоры, рельефность и пр. При этом они получаются без заусенцев, правильного габарита и формы, а также с идеальными краями.

Не малую популярность в наше время набрала объемная фрезеровка пластика, в особенности в 3D виде. Это довольно востребованные услуги, которые применяются для промышленных изделий, корпусов. Причем детали быстро делаются, так как довольно быстро работает станок фрезерно-гравировального типа, а цена за выполненные работы невысокая. Обрабатываются как шлицевые, так и фасонные и зубчатые детали, а также проделывают обработку отверстий, торцов, пазы. Из пластика в 3Д виде можно фрезеровать декоративные и пр. детали, формы для литья, полимерные корпуса и многое другое, создавая оригинальные и нужные формы изделий.

Фрезерная обработка под контролем приборов

Что такое фрезерование с ЧПУ?

Мы рассмотрим процесс, механизмы и т. д. Но давайте сначала проясним, что означает фрезерный станок с ЧПУ, и внесем ясность в некоторые из наиболее запутанных моментов самого термина.

Во-первых, люди часто спрашивают о механической обработке с ЧПУ, когда ищут фрезерование. Механическая обработка включает в себя как фрезерование, так и токарную обработку, но эти два процесса имеют явные различия. Механическая обработка относится к технологии механической резки, которая использует физический контакт для удаления материала с использованием широкого спектра инструментов.

Во-вторых, вся механическая обработка с ЧПУ использует станки с ЧПУ, но не все станки с ЧПУ предназначены для механической обработки. Числовое программное управление — вот что стоит за этими тремя буквами. Любой станок с ЧПУ использует компьютеризированные системы для автоматизации процесса резки.

Поэтому к станкам с ЧПУ также относятся лазерные резаки, плазменные резаки, гибочные прессы и т.д.

Таким образом, обработка с ЧПУ — это смесь этих двух терминов, дающая нам ответ на вопрос, поставленный в заголовке. Фрезерование с ЧПУ — это субстратный метод изготовления, который использует компьютерные системы числового управления для автоматизации процесса.

Процесс фрезерования

NI1ty9pONuebIdHmUZz0Y4hxaMEcBSSJ02AypB57.jpg

Мы могли бы ограничиться описанием только процесса изготовления, но обзор всего процесса дает более целостную картину.

Процесс фрезерования включает:

  • Проектирование деталей в САПР;
  • Перевод файлов САПР в код для обработки;
  • Настройка техники;
  • Производство деталей.

Проектирование файлов САПР и перевод в код

Первым шагом является создание виртуального представления конечного продукта в программном обеспечении САПР. Существует множество мощных программ CAD-CAM, которые позволяют пользователю создавать необходимый G-код для обработки.

Код доступен для проверки и изменения, если необходимо, в соответствии с возможностями машины. Кроме того, инженеры-технологи могут смоделировать весь процесс резки с помощью такого программного обеспечения.

Это позволяет проверять ошибки в дизайне, чтобы избежать создания моделей, которые невозможно изготовить.

G-код также можно написать вручную, как это делалось раньше. Однако это значительно удлиняет весь процесс. Поэтому мы предлагаем в полной мере использовать возможности современного инженерного программного обеспечения.

Настройка машины

Хотя станки с ЧПУ выполняют резку автоматически, многие другие аспекты процесса требуют участия оператора станка. Например, закрепление заготовки на рабочем столе, а также прикрепление фрезерного инструмента к шпинделю станка.

Ручное фрезерование сильно зависит от операторов, в то время как новые модели имеют более совершенные системы автоматизации. Современные фрезерные центры также могут иметь возможность работы с подвижной оснасткой. Это означает, что они могут менять инструменты на ходу во время производственного процесса. Так что остановок меньше, но их все равно нужно выставить заранее.

После завершения начальной настройки оператор в последний раз проверяет программу машины, прежде чем дать машине зеленый свет для запуска.

Производственная работа:

В процессе фрезерования используется вращающийся инструмент, который входит в контакт с заготовкой, чтобы отрезать стружку. В результате непрерывной резки получается желаемая форма.

Однако есть несколько различных способов выполнения резки:

  • Обычное фрезерование (попутное фрезерование);
  • Встречное фрезерование.
NaeL43eER7DyDKnQ6S7L2EbWe20LM7jPQr78AWPd.jpg

Как следует из названия, обычное фрезерование было более распространенным способом фрезерования , по крайней мере, в прошлом.

Механика обычного фрезерования:

  • Толщина стружки увеличивается. Это может вызвать повышение температуры, что приведет к деформационному упрочнению;
  • Начало резания включает в себя большее количество трения, что ускоряет износ инструмента и сокращает срок его службы;
  • По мере того, как зубья уносят стружку вверх, они могут снова попасть на траекторию резания, что ухудшит качество полировки;
  • Необходим более плотный зажим и фиксация заготовки, чтобы избежать смещения, вызываемого большими силами, направленными вверх.
2erMADntmis9lqHmnBy9uDgzLt1AjFAs8l7Xc5v0.jpg

Более новые фрезерные станки с ЧПУ используют встречное фрезерование.

Особенности встречного фрезерования:

  • Толщина стружки уменьшается, вызывая нагрев стружки, а не заготовки;
  • Режущая поверхность становится чище, что снижает трение и увеличивает срок службы инструмента;
  • Стружка попадает за фрезу, что снижает проблему загрязнения траектории резания;
  • Горизонтальное подъемное фрезерование создает направленные вниз силы, уменьшая необходимость в дополнительном зажиме.

Процесс фрезерования обычно состоит из нескольких различных операций, но это зависит от формы конечного продукта и состояния заготовки. Часто фрезерование необходимо для придания точной отделки и добавления нескольких элементов, таких как пазы или резьбовые отверстия.

Но он также подходит для создания готовой детали из блока материала. Первые операции используют более крупные инструменты, чтобы быстро вырезать материал, чтобы закрепить процесс до получения приблизительной формы конечной детали.

Смена инструмента необходима для создания высокоточных обрабатываемых деталей. Высокая точность фрезерования достигается на последнем этапе, благодаря чему технические допуски и шероховатость поверхности достигаются до уровней, трудно сопоставимых с любым другим производственным процессом.

2. Схемы фрезерования

Цилиндрическое и торцевое фрезерование в зависимости от направления движений резания и подачи можно осуществить двумя способами: попутным фрезерованием, когда совпадают направления главного движения и движения подачи, и встречным фрезерованием, когда направления главного движения и движения подачи не совпадают.

При попутном фрезеровании (рис. 27, а) толщина срезаемого слоя изменяется от максимальной до нуля, зуб врезается в заготовку с ударом. Горизонтальная составляющая силы резания направлена по подаче, а вертикальная – вниз, на заготовку. При встречном фрезеровании (рис. 27, б) толщина срезаемого слоя изменяется от нуля до максимальной (зуб плавно врезается в заготовку). Горизонтальная составляющая силы резания направлена против подачи, а вертикальная – вверх.

Фрезерование

Рис. 27. Фрезерование: а – попутное; б – встречное; Dr – движение резания; DS пр – движение продольной подачи; Рг, Рв – соответственно горизонтальная и вертикальная составляющие силы резания; Sz – подача на зуб; v – скорость резания

Рациональность использования какой-либо схемы обусловлена требованием к качеству обработки, условиями обработки заготовки и состоянием фрезерного станка. При черновой обработке литых заготовок (особенно литья в песчано-глинистые формы), имеющих твердую поверхностную корку, использование попутного фрезерования нерационально, так как удар зуба фрезы об эту корку приводит к его выкрашиванию или поломке.

Лучше использовать встречное фрезерование. Зуб начинает работу в мягком материале сердцевины заготовки, подходя к корке, он взламывает ее. При чистовом фрезеровании, наоборот, рациональнее использовать попутное фрезерование. Теоретически при встречном фрезеровании резание начинается с нулевой толщины срезаемого слоя, которая постепенно увеличивается. Однако режущая кромка зуба фрезы имеет радиус округления, равный 0,03–0,05 мм. При чистовом фрезеровании толщина резания невелика. В начале резания зуб не режет, а скользит по обрабатываемой поверхности без снятия стружки. При этом создаются значительные напряжения сжатия в поверхностных слоях заготовки, приводящие к значительному наклепу, повышенному истиранию режущей кромки зуба, вибрациям в системе СПИД и плохому качеству обработанной поверхности. При попутном фрезеровании толщина срезаемого слоя невелика, поэтому ударное вхождение зуба в материал заготовки не вызывает существенных колебаний в системе СПИД, что способствует стабильной работе фрезы, а шероховатость обработанной поверхности улучшается на один класс. Особенно эффективно попутное фрезерование при обработке вязких материалов, склонных к наклепу и налипанию.

При обработке встречным фрезерованием горизонтальных плоско стей нежестких заготовок или заготовок относительно небольшой толщины (до 30 мм) вертикальная составляющая силы резания будет отрывать заготовку от стола, это может привести к неравномерности глубины срезаемого слоя (большая погрешность обработки по толщине заготовки) или к большим усилиям на закрепление заготовки (возможны деформации заготовки). Лучше использовать попутное фрезерование, когда вертикальная составляющая силы резания прижимает заготовку к столу.

Сложные и простые станки для фрезерной обработки металла

В зависимости от того, как устроено производство на заводе (крупные или мелкие серии, разновидность процедур), закупается одно универсальное оборудование с возможностью его быстро перенастраивать или несколько узкоспециализированных, которые отличаются своей определенной задачей.

В первом случае рекомендуем устанавливать устройства с ЧПУ от https://stanokcnc.ru/. Так вы сможете быстро переустанавливать оснастку, крепить заготовку, а программу и режим, скорость резания выберет сам аппарат, исходя из параметров исходного сырья и схемы металлообработки.

Во второй представленной ситуации, когда видов установок несколько, дополнительно создается конвейерная лента.

попутное и встречное фрезерование

Отрезные работы

Чтобы разрезать небольшую заготовку на стандартном оборудовании, потребуется пальчиковая фреза. Такой вариант требует от установки большой производительности и затрат энергии. Чтобы выполнить разделение крупных деталей, применяются станки, оснащенные дисковыми пилами.

Техоснастка для фрезеровочного оборудования

Функционирование фрезеровочного станка обеспечивают следующие комплектующие:

  • Режущий элемент.
  • Патрон.
  • Делительные головки.
  • Оправки.
  • Устройство для закрепления заготовки на столе.

Помимо описанных расходников для упрощения процесса обработки, вы можете использовать следующие приспособления:

  • Прибор для нарезания шипов.
  • Прибор для автоматизированной подачи.

Станки в Воронеже от ООО «Роста»: достойное качество по выгодной цене

Мы предлагаем широкий ассортимент станков для работы с металлом отечественного производителя по ценам в несколько раз ниже импортных аналогов. Российская продукция не уступает зарубежной ни в качестве, ни в функционале.

В нашем каталоге вы найдете как ручные, так и автоматические или полуавтоматические варианты оборудования, которые помогут для обработки самых сложных эскизов из любого материала.

Чтобы получить подробную информацию об ассортименте, скидках и условиях доставки, свяжитесь с нами по телефону. Наши менеджеры предоставят вам подробную консультацию и помогут оформить заказ.

Развитие технологии фрезеровки металла

Изначально токарно-фрезерная обработка металла проводилась вручную. Мастера работали самодельными приспособлениями и обычными инструментами. Из-за этого производительность была низкая, а на выходе получалось множество бракованных деталей. Даже опытным мастерам металлообработки было сложно изготовить деталь точных размеров и формы.

С развитием технологий начали появляться станки, которые работали с помощью электродвигателей. С их помощью можно было точнее и быстрее обрабатывать заготовки. Обработка металла значительно упростилась, а технологии продолжали развиваться. Постепенно обычные станки начали оборудоваться системами ЧПУ. На сегодняшний день профессиональное оборудование работает самостоятельно после настройки программы. Для производства достаточно, чтобы один оператор настраивал программу и контролировал процесс работы станка.

5. Станки фрезерной группы

В условиях единичного и мелкосерийного производства широко используются универсальные консольно-фрезерные станки: горизонтальнофрезерные без поворотного стола; горизонтально-фрезерные с поворотным столом; вертикально-фрезерные.

горизонтально-фрезерный станок вертикально-фрезерный станокгоризонтально-фрезерный станок MMF-125PD

Рис. 29. Универсальные фрезерные станки: а – горизонтально-фрезерный; б – вертикально-фрезерный; 1 – фундаментная плита; 2 – станина; 3 – коробка скоростей; 4 – хобот; 5 – шпиндельный узел; 6 – поперечные салазки; 7 – стол; 8 – серьга; 9 – поворотные салазки; 10 – продольные салазки; 11 – консоль; 12 – поворотная планшайба; 13 – шпиндель; в – ГФС MMF-125PD

На рис. 29, а показаны основные узлы горизонтально-фрезерного станка с поворотным столом. На фундаментной плите 1 установлена чугунная станина 2, внутри которой расположены отсек для электрооборудования, коробка скоростей 3 и шпиндельный узел 5. По верхним направляющим станины перемещается хобот 4. Хобот может устанавливаться относительно станины с различным вылетом.

Серьга 8, совместно с хоботом обеспечивающая жесткость фрезерной оправки, перемещается по его направляющим и закрепляется гайкой. С помощью винтового домкрата по вертикальным направляющим станины перемещается консоль 11.

По горизонтальным направляющим консоли перемещаются продольные салазки 10, по верхним направляющим которых перемещаются поперечные салазки 6, а на них установлены поворотные салазки 9 и стол 7. Вертикальное, продольное и поперечное движения подачи стола могут осуществляться вручную или коробкой подач, размещенной в консоли. Вращательное движение выходного вала коробки подач преобразуется в поступательное перемещение стола с помощью механизмов «ходовой винт – гайка». На верхней части стола выполнены поперечные Т-образные пазы для установки заготовки или рабочих приспособлений.

На рис. 29, б показаны основные узлы вертикально-фрезерного станка. Эти станки имеют много общих унифицированных узлов и деталей с горизонтально-фрезерными станками, но отличаются от них вертикальным расположением шпинделя 13, который можно поворачивать под углом до 45° в обе стороны с помощью поворотной планшайбы 12. На фундаментной плите 1 установлена чугунная станина 2. Внутри станины расположены отсек для электрооборудования, коробка скоростей. В верхней части станины установ лена поворотная планшайба 12 с фрезерной головкой и шпинделем 13. С помощью винтового домкрата по вертикальным направляющим станины перемещается консоль 11 с продольными 10, поперечными 6 салазками и столом.

Просмотров: 1 146

Сопровождающие явления

Есть процессы, которые могут повлиять на качество результата:

  • Стружка. Если она попадает в зону резания, то может сделать деталь дефектной или повредить саму режущую кромку.
  • Наклеп. Из-за увеличения температуры в зоне резки происходит повышение твердости края при снижении его прочности.
  • Трение и вибрации – они естественным образом приводят к более медленному процессу.

фрезерование что такое

Возможности процедуры

В статье мы рассказали про фрезеровку – что это такое и какие обширные сферы применения она имеет. Теперь мы предлагаем каждому читателю опробовать все возможные функции на своем универсальном станке.

Профильное фрезерование:

Обычная операция фрезерования для изготовления выпуклых и вогнутых деталей. Процесс состоит из 3-х этапов — черновой, получистовой и чистовой.

При черновой обработке используются круглые пластины для выполнения начальной работы по удалению большей части материала. Концевые фрезы со сферическим концом идеально подходят для получистовой и чистовой обработки.

Такая работа в значительной степени выиграет от фрезерования с ЧПУ, поскольку 4- и 5-осевая технология может значительно ускорить операции, а также обеспечить лучшее качество.

Зубофрезерование:

Да, фрезерование также находит применение для производства различных типов шестерён . Весь процесс изготовления шестерён состоит из двух этапов.

Сначала идет зубофрезерование. Мягкость материала позволяет с легкостью изготавливать деталь, обеспечивая при этом большие допуски. Затем шестерни проходят процесс термообработки для упрочнения поверхности. После этого токарная обработка с ЧПУ будет отвечать за конечный результат.

Подходящие материалы:

Фрезерование с ЧПУ можно использовать для обработки множества различных материалов. Выбор, конечно же, сводится к требованиям. Процесс выбора состоит из следующих этапов:

  • Создание геометрии детали;
  • Определение сил, действующих на деталь. Программное обеспечение САПР с надстройками FEA может здесь очень помочь;
  • Определение свойств материала на основе результатов;
  • Создание списка возможных материалов;
  • Выбираем тот, который соответствует требованиям с наилучшим соотношением рентабельности;
  • Убедившись, что материал подходит для фрезерования.

Металлы, пригодные для фрезерования с ЧПУ:

  • Мягкая сталь;
  • Нержавеющая сталь;
  • Инструментальная сталь;
  • Алюминий;
  • Латунь.

Пластмассы, пригодные для фрезерования:

  • АБС
  • Нейлон
  • Поликарбонат
  • ПОМ
  • ПТФЭ
  • HDPE
  • PEEK

Если вам понравился данная статья, то поделитесь её со своими друзьями, оставляйте комментарии и ставьте лайк!

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...